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Disclaimer 
I am an epidemiologist, not a statistician. These notes are written from my experience 
of working in the field of medical research for over 40 years. I have sought to give 
what I hope is a clear and simple explanation of some rather complex statistical 
principles. I do not profess to be an expert in statistics and a ‘proper’ statistician 
reading this guide may take issue with some of my explanations. Accordingly, I would 
encourage the reader to refer to one of the many excellent introductory books 
available on statistics for further guidance; some titles are given in the references 
and further reading. 
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(1)  Overview and learning outcomes 
 
This guide is for those who need to interpret numbers but have little or no knowledge 
of statistics. The content is appropriate for those who may need to critically appraise 
published (quantitative) articles. The focus is on interpreting rather than generating 
the results of a statistical analysis. However, some detail on the statistics is provided 
to facilitate the explanations, though this can be omitted without loss of the overall 
message. Examples are used throughout and at the end of reading this guide you 
should be able to: 
 

• Distinguish between absolute and relative measures 

• Describe and interpret a confidence interval 

• Explain the distinction between confidence intervals and P-values 

• Interpret the results of one-sample, unrelated (independent) and related 
(paired) t-tests 

• Understand the limitations of the t-test 

• Interpret the chi-square test for comparing proportions 

• Interpret and make sense of the results from a drug trial. 

• Make sense of data presented in graphs 

• Understand the concept of linear correlation 

• Interpret and make sense of the odds ratio 

• Interpret and make sense of a Run Chart and Control Chart 

• Interpret and make sense of a Funnel Plot 

• Be aware of some of the common pitfalls in published statistics 
 
The terminology can also be challenging so we have provided a glossary at the end.  
 
Associated NHS Fife study guides: 
7 How to plan your data collection and analysis 

10 An introduction to medical statistics 
11 How to calculate sample size and statistical power 
12 How to choose a statistical test 
14 An introduction to SPSS 
 
 (2)  Introduction 
 
Statistics is the science of assembling and interpreting numerical data. It is 
concerned with estimation and with describing uncertainty. We use descriptive 
statistics to estimate, for example, the prevalence of asthma in children within a 
community, the proportion of patients with hospital acquired infection, the length of 
stay (in hospital), the demographics of patients attending a particular clinic, the 
benefit of a drug on some physiological response etc. When presented with such 
figures it can be a challenge to make sense of them in terms of what they tell you 
and, just as importantly, what they do not. Consider the following typical statements:  

• Mortality in Group A was 60% higher than that in Group B 

• The mean length of stay was 4.3 days but the median was only 1 day 

• Mean age of disease onset was 38.2 years in men and 43.3 years in women 
(mean difference 5.1 years, 95% confidence interval 3.5 to 6.7, P=0.009, 
unmatched t-test) 
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• The average reduction in diastolic blood pressure was 9 mm Hg (95% CI 4.5 
to 13.1, P<0.01, paired t-test) 

• Lung size correlated strongly with height in adult men (r=0.71, P=0.001) 

• The number needed to treat with drug A was 38 whereas that for drug B was 
12 

• As an example of a real problem, consider the following:  

In the 1990s a survey was undertaken of NHS Board members who held 
responsibility for commissioning services. A questionnaire was sent with details of 
4 rehabilitation programmes. Respondents were told that each programme cost 
about the same. They were asked to review the information presented on the 
different outcomes and select the best programme suitable for funding. The 4 
programmes with their associated outcomes were: 

Prog 1 – with an absolute reduction in deaths of 3% 
Prog 2 – with an increased survival from 84% to 87% 
Prog 3 – with reduced death rates by 19% 
Prog 4 – 33 patients needed to avoid 1 death 

 
Which programme would you have chosen?  (we’ll return to this question in a later 

section) 
 
Confused? This guide should help you identify the strengths, limitations and 
interpretation of these types of statistical results.  
 
A single statistic will have only limited utility. For example, if you are told the average 
height of school children aged 13 years is 152 cm this ignores any difference 
between boys and girls and you cannot assume that all children are this height. Also, 
the single value of 152 cm tells you nothing about the minimum or maximum heights 
of the group of children.  So, what figures do you need to describe fully these details 
for a population?   
 
Any set of measurements that describes data from a sample has two important 
properties: the average, central or ‘typical’ value and the spread of values about that 
average. We use descriptive measures to describe ‘typical’ values (also called 
measures of location), such as the mean, median, mode and the spread of values 
such as the variance, standard deviation (SD), interquartile range (IQR) and 
confidence intervals of the mean and other estimates. You will hear these terms used 
widely in describing data and further details of their derivation are given in the NHS 
Fife study guide ‘Introduction to Medical Statistics’. 
 
Other ways of describing data include bar charts showing frequencies for different 
groups within a sample, histograms for a variable showing frequencies of data split 
into ranges, pie charts depicting proportions and scatterplots exploring the 
relationship between two quantitative variables. 

 
(3) Awareness of Numbers: Absolute and Relative Measures 
 
Numbers may be presented as absolute figures (e.g. the number of people who died 
from road accidents in a year) and in relative figures (e.g. the proportion, or 
percentage, of people who were aged 18-25 years, amongst those who died in road 
accidents in a year). 
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Be wary of the use of percentages in headlines as the way summary data are 
presented can be misleading.  In the mid-1970s Barbara Castle, the Minister of 
Health, announced a 30% salary increase for student nurses. This relative amount 
was generous and looked impressive but student nurses were poorly paid and 30% 
of a small, absolute number is itself still a small number! A percentage salary 
increase of 10% looks impressive when inflation is running at about 2% but work out 
for yourself what is the absolute increase in salary for those currently employed 
(2020) on the National Minimum Wage which, for a person aged over 25 years is 
£8.72 per hour. A 10% increase amounts to 87p per hour.  
 
Consider the headline “70% of deaths from Swine ‘flu are in women”. Think about 
what it is you are being presented with. Make the distinction between absolute and 
relative figures. When you are given a percentage to consider ask what base number 
it relates to. In this example is the 70% estimate based on 10 or 100 cases. For an 
extra woman (instead of a man) dying from Swine ‘flu the percentage for the group of 
10 patients would increase from 70 to 80%; for the group of 100 the percentage 
would increase from 70 to 71%. 
 
In the 1990s the Department of Health published routine summary statistics on health 
service activity and outcomes for different trusts in England. A journalist picked up on 
one aspect and the following newspaper headline appeared:  

“Infant mortality in Gateshead 50% higher than national average.” 

This caused great concern locally, particularly amongst parents of new born babies.  
 
The infant mortality rate is the number of infants who die in their first year of life as a 
proportion of the total number of live births. The rate is considered a good reflection 
of the state of the health services in a country. In the UK infant mortality has dropped 
markedly since 1900 when the rate was about 140 / 1000. At the end of the century it 
was about 6 / 1000 (or about 4% of the rate at the start of the century). How does this 
relate to numbers?  The population of the UK has grown over the century but the 
number of births has declined. In England & Wales in 1901 the commonest causes of 
death in infants under a year of age were atrophy, debility and premature birth. The 
total number of infants dying was huge at 140,648. In 1998 the commonest causes of 
death in infants under a year of age were ‘Neonatal’ and Sudden Infant Death 
Syndrome (SIDS). In total 3,625 infants died (or about 2½% of the 1901 total) (Table 
1). 
 

How else could these figures be reported?  A comparison of rates differs from a 
comparison of the absolute number of deaths (Table 2). This is because the number 
of births in each year is itself different, about 1,005,000 in 1901 and about 600,000 in 
1998. 

 



NHS Fife Research Study Guide: [13] How to Make Sense of Numbers.  

Copyright NHS Fife, Research & Development Office, Dr David Chinn, v5, 9th November 2020.  Page 5 

 

Table 1. The number and principal causes of death in infants aged 0-1 years,  
England and Wales, 1901 and 1998. 

Principal cause and number of deaths, England and Wales 
1901  1998 

Cause Deaths  Cause Deaths 
Atrophy, debility 18,685  Neonatal 2,418 
Premature birth 18,562  Sudden Infant Death (SID)  234 
Convulsions 15,513  Anomalies of the heart 42 
Diarrhoea 13,233  Ill-defined Intestinal infection 41 
Enteritis 13,084  Asphyxia 39 
Bronchitis 11,694  Other diseases of the lung 39 
Bronchial pneumonia 6,228  Meningococcal infection 25 
Whooping Cough 4,793  (Whooping Cough 2) 

Others 38,856  Others 785 

Total 140,648  Total 3,625 

 
 

Table 2. Alternative ways of reporting data on change in infant mortality,  
England and Wales, 1901-1998 

 1901 1998 

Number of deaths age <1 yr 140,648 3,625 

Rate / 1000 live births 140 6 

Comparison of rates 6/140 (%) = 4.3%,    or 95.7% reduction,  

or 140/6 = 23 fold decrease 

Comparison of number of 
deaths 

3,625 / 140,648 = 2.6%,     or 97.4% reduction,  

or 140,648 / 3,625 = 39 fold decrease 

 
Consider the statement “Infant mortality in Gateshead 50% higher than the national 
average” and what this means in terms of the actual number of infants dying. In 
absolute terms it was a difference between 9/1000 live births (in Gateshead) 
compared with a national average of 6/1000 live births (Table 3).   
 

Table 3. A comparison of relative and absolute measures of infant mortality  

 National average Gateshead 

Rate / 1000 live births 6 9 

Comparison of rates 9/6 (%) = 150%,    or 50% increase  

or 9/6 = 1½ fold increase 

Absolute terms 3 extra deaths per 1000 live births 

 
The journalists were correct in that infant mortality in Gateshead was 50% higher 
than the national average (the relative comparison). But the difference in absolute 
terms worked out at just 3 extra deaths per 1000 live births. The Director of Public 
Health was interviewed on local television and tried hard to make this distinction 
stating that the extra deaths were small in number and related to impoverished living 
arrangements, poor social circumstances, poverty etc, common to city dwelling 
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communities, but each time the journalist would emphasise the relative statistic. The 
message here is: 

Be wary of rates based on small numbers. 

Always consider the base number on which a percentage or rate is based! 
 
(4)  Awareness of Numbers: The Illusion of Accuracy 
 
An audit of emergency admissions to a surgical unit was undertaken to estimate the 
proportion of GP referrals that were considered inappropriate. Ninety-three 
consecutive admissions were reviewed over four weeks and 18 were considered 
inappropriate by the surgeons. The proportion is 18/93 but this was reported as 
19.3548 %. The reporting of figures to 4 decimal places implies a level of accuracy 
that, in this case, is simply not justified. Even reporting it to 2 decimal places is 
inappropriate because the sample is relatively small and you cannot estimate the 
accuracy of the true proportion with such a small sample. In this example, 19 % is 
perfectly satisfactory. The message here is: 

Be wary of numbers reported to many decimal places which can give a 
spurious illusion of accuracy. 

(5)  Awareness of Numbers: The Level of Uncertainty 
 
Statistics is concerned with estimation and with describing uncertainty. Each estimate 
from a sample is a snapshot of what you think is the true value in the population from 
which the sample was drawn. In the example above this is the proportion of 
inappropriate referrals being made by GPs to a local hospital surgery unit. The level 
of uncertainty is described in a confidence interval which is a range of values in 
which we believe the true value is likely to lie. It is common practice to report the 95% 
confidence interval (95% CI) which is interpreted as: ‘we are 95% confident that the 
true value lies between x and y’ (see Glossary). In the example above where the 
proportion was 19% based on 93 observations the 95% CI is 11% to 27%. A different 
sample of similar size would yield a different proportion but we would expect the 
estimated proportion to lie within this range of values (confidence interval). Now, it 
may be that the surgeons consider this range to be too wide. They decide to repeat 
the audit to obtain a better estimate, and narrower confidence interval. This would 
involve a larger study but the numbers needed would depend on the width of the 
confidence interval the surgeons decided was optimal. The message here is: 

A single estimate must be interpreted in relation to its confidence interval and 
to increase precision you must increase the sample size. 

Some information on the principles behind the derivation of confidence intervals is 
given below. However, more specific detail on how to calculate a confidence interval 
and how to determine the sample size needed for a study are given in the NHS Fife 
Study Guides: ‘An Introduction to Medical Statistics’ and ‘How to Calculate Sample 
Size and Statistical Power’.  
 
(6)  Confidence Intervals for a Continuous Variable 
 
A continuous variable is one which can theoretically take any value within a given 
range (for example, height). When estimating some characteristic in a population 
(e.g. average height) we take a sample that we hope is representative of the 
population and calculate summary statistics from the sample. We can calculate the 
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average value (the mean) for the characteristic and the standard deviation (SD) 
which is a measure of the variability in the data. The SD is the average of the 
deviation of individual values from the mean and describes the spread of data around 
the mean. The SD is calculated from the data itself and, in data that are distributed in 
a bell-shape (also called the ‘Normal’ or Gaussian distribution) about 68% of the 
observations will have a value between one SD below and one SD above the mean. 
Similarly, about 95% of the observations will have a value between 1.96 SD below 
the mean and 1.96 SD above the mean (Figure 1).  
 
The mean ( x ) and SD from the sample should be a good estimate of the true mean 

(µ) and SD (σ) of the population from which the sample is drawn, provided the 
sample is representative. However, the sample mean is unlikely to be exactly the 
same as the population mean. A different sample would give a different estimate of 
the population mean and the difference would be due to sampling variation. The 
relationship between the population true mean and SD and that estimated from the 
sample is shown in Table 4.  

Table 4. Relationship between a sample and the population from which it is 
drawn 

 Reality, ‘Truth’  Estimate  
Population: Size = N Sample: size ‘n’ 

Mean:  μ x  

SD: σ SD  
  ↓ 
  Standard Error of the mean,   SE ( x ) = SD /  

  ↓  
  Confidence Interval of the estimated mean 

The estimated SD is used to derive the standard error (SE) which is a measure of the 
accuracy of the estimated mean ( x ).  

Standard Error of the mean, SE ( x ) = SD of sample /   (equation 1) 

where ‘n’ is the number of observations in the sample. 

The size of the SE depends on the degree of variation in the sample and on the size 
of the sample; the larger the sample, the smaller the SE. The SE in turn is used to 
calculate the confidence interval for the estimated mean. The 95% confidence 
interval is calculated as: 

95% CI = sample mean  1.96 x SE ( x )     (equation 2) 

Using 1.96 to define the interval is acceptable when you have a sufficiently large 
sample (>30) but the situation is different when you have much smaller samples. 
Then you use a larger value than 1.96, taken from the t-distribution, to define the 
interval because, when based on small numbers (<30) there is a greater level of 
uncertainty in the assumptions (further details in the NHS Study Guide: Introduction 
to Medical Statistics).  
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Mean = 160.7 cm,  
SD = 6.4 cm 

 
Mean +/- 1 SD =  

154 – 167 
 

This range will contain 
about 68% of the 

observations 

 

 
 

Mean = 160.7 cm,  
SD = 6.4 cm 

 
Mean +/- 1.96 SD =  

148 – 173 
 

This range will contain 
about 95% of the 

observations 

Figure 1. The height of 3,607 adult women recorded in the Scottish Health Survey, 
1998. 

 
(7)  Confidence interval for a proportion (percentage).  
 
A narrow confidence interval means your estimate is precise whereas a wide 
confidence interval means it is imprecise. A wide confidence interval can occur 
because it is based on a small number of observations, or that there is simply a large 
degree of variation in the individual data. To calculate a confidence interval (CI) for a 
proportion you need: 

• The proportion (or percentage) itself 
• The number of observations 
• The standard error of the proportion (or percentage) 
• The number of standard errors needed to encompass the interval chosen (e.g. 

a 95% CI needs 1.96 SEs) 

For a proportion (P), SE (P) = )    (equation 3) 

95% CI = P  1.96 x SE (P)     (equation 4) 
 

For a percentage (P%), SE (P%) = )  (equation 5) 
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95% CI = P%  1.96 x SE (P%)      (equation 6) 
 
In the audit of emergency admissions above the percentage of inappropriate referrals 
based on 93 observations was 19%. The 95% CI was calculated as: 

SE (P%) = ) =  = 4% 

The 95% CI = P%  1.96 x SE (P%) 

the upper CI = 19 + (1.96 x 4.0) = 27% 

the lower CI = 19 – (1.96 x 4.0) = 11% 

 
(8)  The relationship between Confidence Intervals and P-values from tests of 

statistical significance 
 
A confidence interval (CI) is a range of values in which the true mean for a population 
is likely to lie. A narrow CI means your estimate is precise. A wide CI means your 
estimate is imprecise, due either to it being based on a small number of 
observations, or that there is simply a lot of variation in the data.  
 
A P-value is derived from a test of statistical significance as used in testing a 
hypothesis. In any experiment comparing, for example, the frequency of observations 
in two samples there will always be a difference between them. The question is 
whether the observed difference reflects a true difference between the two 
populations from which the samples were drawn. Significance tests cannot prove that 
an observed result is due to a real effect. It can only assess this in terms of ‘the 
probability of occurrence of a result as extreme, or more extreme than that 
observed if the null hypothesis were true’. This is the definition of the P-value 
(also referred to as the type I error). Effectively, it is the probability of getting the 
wrong answer! Selecting a P-value of 0.05 to delineate statistical significance and the 
decision to reject the null hypothesis means we are prepared to be wrong 1 chance 
in 20 (5%). 
 
The P-value has been likened to the ‘probability that the observed effect is due to 
chance’ but this interpretation is frowned upon by some statisticians. 
 
The first stage is to make up the null hypothesis which states that there is no 
difference (in whatever you are testing) between the two populations.  We then select 
a sample from each population which we hope is representative of that population 
and set out to disprove the null hypothesis by applying a significance test to the 
measurements from each sample. The P-value assesses how likely it would be to 
observe such a difference between the two samples when in reality there is no such 
difference between the populations from which the samples were drawn. It is 
common practice to consider a P-value of less than 0.05 to indicate a statistically 
significant result. The smaller the P-value the stronger is the evidence against the 
null hypothesis of no difference in the mean value under test between the two 
populations. A P-value of 0.001 would encourage you to reject the null hypothesis 
and conclude that there is a real difference between the two populations, but you 
might be wrong and, in this case, the probability of being wrong is only 0.001 or 1 in 
1000. 
 
Authors sometimes write that a significance test revealed a P-value between 0.05 
and 0.10 and the test “just failed to reach statistical significance”. This is a poor 
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phrase frowned upon by statisticians. What this actually means is that there is no 
difference in the mean values of whatever is under test between the groups, or, more 
likely, that there were too few participants to demonstrate a difference between the 
groups if one truly exists (Figure 2). 

 

Figure 2. A hypothesis test and statistical considerations comparing two distributions. 

HO= null hypothesis of no difference in the means between the two populations 
HA= alternative hypothesis in favour of a difference between the two populations 
µ and µ´ are the mean values for each population 
2σ refers to 2 standard deviations. 
α = 0.05 is the P-value associated with the decision to reject the null hypothesis in 
favour of the alternative hypothesis (also referred to as the type I error). 
β is the type II error and 1- β is the power of the study to detect a difference if one 
truly exists. 
The further apart the distributions are the greater is the difference between the mean 
values of the two samples, and the greater the likelihood that the difference 
measured reflects a true difference in mean values of the populations from which 
each sample was drawn.  
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Example: Mortality in patients with heart failure 
A randomised controlled trial was undertaken to compare the mortality experience of 
two drugs (A and B) being used to treat patients with heart failure.  
Of those patients on drug A, 33% died.  
Of those patients on drug B, 38% died.  
The difference = 5%. The statistical test comparing proportions gave a P-value of 
0.07 (not statistically significant by convention).  
The 95% confidence interval of the difference in mortality was -1% to +12%.    
This 95% interval includes the value zero so is not significantly different from zero at 
the 5% level (P=0.07).  
But, in interpreting the confidence interval we are 95% confident that the true 
difference in mortality between drugs A & B is between: 
-1% (A worse than B), or +12% (A better than B) 
Interpretation: Drug A is likely to be better than Drug B for reducing mortality in 
patients with heart failure but the evidence underpinning the inference is weak.  

 
Should we cite P-values or confidence intervals? A P-value will tell you whether or 
not there is a statistically significant difference between two populations. The 
confidence interval will provide information about the size of the difference and the 
strength of the evidence.  Confidence intervals provide more information than a P-
value alone and both should be cited.   
 
The relationship between P-values and confidence intervals is visually represented in 
Figure 3. 
  
Statistical inference and extrapolation of results from a sample to a population 
assumes that the sample is representative of the population from which it is drawn.  
When this is not the case the conclusions will lack validity and be unreliable.  
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Figure 3. The relationship between P-values and the 95% confidence intervals. 

 
The zero line along the horizontal axis represents ‘no difference’ between the samples. 
A P-value greater than 0.05 (5%) (e.g. 0.8 as above) will be associated with a 95% 
confidence interval that staggers the zero line. This implies the null hypothesis cannot 
be rejected suggesting there is no difference in the populations from which the samples 
were drawn. A P-value of exactly 0.05 (5%) will be associated with a 95% confidence 
interval that starts from zero. A P-value less than 0.05 will be associated with a 95% 
confidence interval that does not include zero, hence we can reject the null hypothesis 
in favour of an alternative suggesting that the two populations from which the samples 
were drawn are significantly different from one another in the characteristic under 
investigation. In simple terms the smaller the P-value the further away from zero will be 
one end of the confidence interval. However, we may be wrong in rejecting the null 
hypothesis. The reality may be that the two populations do not differ but our samples 
suggest they do.  The P-value represents the probability of making the wrong decision. 
 
(9)  Tests of Statistical Significance: the T-test 
 
The t-test is a parametric test, that is, one applied to data that are Normally 
distributed with a bell-shape (see Figure 1 above for an example of a Normally 
distributed variable). The assumptions underlying use of the t-test are: 

• the data come from a Normal (Gaussian) distribution 

• the samples are not too small 

• the samples do not contain outliers (particularly a problem for small samples) 

• For comparison of 2 samples, that: 
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• the samples are of equal or nearly equal size 

• the variances are equal or approximately so (but this is not critical). 

When comparing two groups the shape of the two distributions should be similar (see 
Figure 2). If the shapes vary markedly in that one distribution is ‘wider’ and less 
‘peaked’ than the other the analysis may be unsound. However, there is a 
modification to the calculations that allow for the difference in shape of the 
distributions and statistical packages will make this adjustment. In general, the t-test 
is robust against small deviations from these assumptions.  
 
There are 3 different t-tests available depending on the data being analysed. 

 
(9.1)  The One-Sample t-Test 
 
This test is applied to a single distribution. The null hypothesis states that the mean 
of the sample does not differ significantly from some hypothesized mean. In effect it 
compares a sample mean with what you think the true mean should be. 
 
Example: haemoglobin concentration at referral in women with colorectal 
cancer. 

The haematology results were reviewed from 58 women who were subsequently 
diagnosed with colorectal cancer to see if they had evidence of anaemia on 
presentation.  

The expected reference value for haemoglobin (Hb) in women = 13.6 g/dl. 

Mean Hb on presentation =12.0, SD 1.9 g/dl 

Mean difference between the women’s Hb and 13.6 (the reference value) = –1.6  g/dl 

The 95%CI of the difference =  – 2.1 to –1.1,  P<0.001  

 
    95% CI         

             

 -2.5 -2.0 -1.5 -1.0 -0.5 0 

Note: this 95% confidence interval does not include the value zero so it is 
significantly different from zero at the 5% level, in this case <0.001. 

Interpretation: we are 95% confident that the true mean Hb at presentation in 
women with colorectal cancer is between -2.1 and -1.1 g/dl less than the reference 
value of 13.6 g/dl. 
 
(9.2)  The Two-Sample, Unrelated, Independent Groups t-Test 
 
The test, also called the unmatched t-test, is used to compare two unrelated 
(independent) samples. The null hypothesis states that the means of the populations 
from which the samples are drawn do not differ significantly from one another.  

Example: haemoglobin concentration at referral in women with colorectal 
cancer. 

This time the results were reviewed from 58 women diagnosed with colorectal cancer 
to see if those with right-sided disease of the colon had a different degree of anaemia 
on presentation compared with those with left-sided disease of the colon.  

These women represent two independent samples  
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Mean Hb on presentation (n=58) =12.0, SD 1.9 g/dl 

Mean Hb on presentation (n=36 with Left-sided disease) =12.9, SD 1.5 g/dl 

Mean Hb on presentation (n=22 with Right-sided disease) =10.7, SD 1.6 g/dl 

The difference in the means of the two groups =  –2.2 g/dl   

The 95%CI of the difference =  – 3.0 to –1.4,  P<0.001 

 
 95%CI      

       

 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0 

Interpretation: we are 95% confident that the true mean Hb in women with right-
sided disease is between -3.0 and -1.4 g/dl less than those women with left-sided 
disease. 
 
(9.3)  The Related, Paired Samples t-Test 
 
This test is similar to the one-sample t-test. It involves one group of subjects where 
each participant has two measurements that are paired (e.g. before and after a drug, 
a follow-up study, a cross-over design where each participant gets both treatments in 
turn, or a case-control design where a participant is matched with a single control). 
The null hypothesis is that the mean difference in the pairs is zero.   
 
Example: change in disease activity in ulcerative colitis over 3 months  

59 patients with ulcerative colitis (UC) were examined and their disease activity 
assessed. They were re-examined 3 months later to determine the change, if any, in 
disease activity.   

Mean baseline score = 5.9, SD 4.3 

Mean follow-up score = 5.6, SD 3.9 

Mean difference in paired scores = –0.3 (SD 2.7) 

95% CI = –1.0 to + 0.4, P=0.4 

 95% CI  

     

 -1.0 -0.5 0 +0.5 +1.0 

 
This result was not significant (P=0.4) and the 95% confidence interval includes the 
value zero, so we cannot reject the null hypothesis of no change in disease activity.  
 
Could we have compared the baseline and follow-up results with the two-sample t-
test? No, because the two samples are related and not independent. In any case the 
baseline mean of 5.9 and SD of 4.3 suggests that the data are not Normally 
distributed, which violates one of the assumptions for using the t-test. The clue here 
is that, because disease activity can only take a positive value the mean (5.9) minus 
twice the SD results in a negative value (-2.7). Remember, the mean +/- twice the SD 
encompasses 95% of the observations in a set of data that are Normally distributed 
(see Figure 1).  The same problem of a negative value for disease activity holds true 
for the follow-up score. The mean and SD of the differences in disease activity was   
-0.3 and 2.7 so it is not possible from these numbers to assess if the distribution of 
the differences did conform to a Normal distribution. Use of the paired t-test assumes 
the differences are Normally distributed and, thankfully, this was the case (Figure 4). 
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Figure 4. The distribution of the baseline, 
follow-up and difference in scores for 
disease activity in 59 patients with 
ulcerative colitis. The distributions of the 
baseline and follow-up scores are 
skewed but the distribution of the 
difference in the baseline and follow-up 
scores conforms more to a Normal 
distribution, hence use of the t-test is 
justified. 

 

 
(9.4)  Consequences of using the t-test when the assumptions are not met 
 
A study was undertaken comparing the average blood loss associated with a 
particular operation performed using two techniques. Technique 1 (the usual 
procedure) was performed on 274 patients with a mean blood loss of 640 ml and an 
SD of 589 ml.  Technique 2 (a new procedure) was performed by the same surgeons 
on 45 patients with a mean blood loss of 789 ml and an SD of 444 ml. The 
researchers used a two-sample t-test to compare the data yielding a P-value of 0.108 
suggesting the null hypothesis of no difference in the mean level of blood loss 
between the two techniques could not be rejected. However, use of the t-test (a 
parametric test) assumes the data are Normally distributed and the researchers had 
not checked the distribution of the data beforehand. However, just ‘eyeballing’ the 
summary statistics suggests the data are not Normally distributed as, for each 
technique, the mean value minus twice the SD yields a negative value for blood loss, 
which is implausible! This was confirmed when the data were plotted as a histogram 
(Figure 5). 
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Surgical Technique 1 Surgical Technique 2 

Figure 5. Distributions of blood loss associated with two surgical techniques 
 
When data are not Normally distributed the mean is less reliable as a measure of 
‘central tendency’ when the correct statistic is the median (See Study Guide 10, An 
Introduction to Medical Statistics). Because the data are not Normally distributed the 
researchers should have used a non-parametric test which, effectively, compares the 
medians (the t-test compares the mean values).  One such test is the Mann-Whitney 
U test (See Study Guide 12 How to Choose a Statistical Test). The summary 
statistics and results of the statistical tests are shown in Table 5. 
 

Table 5. Consequences of using the wrong test when comparing two groups 

  

Blood Loss (ml): Technique 1 Technique 2 Statistical Test 

n 274 45 Parametric 
test 

 
t-test 

 
P=0.108 

Non-parametric 
test 

 
Mann-Whitney 

 
P=0.002 

Mean 640 789 

Median 500 700 

SD 589 444 

Minimum 100 250 

Maximum 7500 2500 

25th Percentile 400 500 

75th Percentile 750 1000 

 
The correct analysis, using the non-parametric test now revealed that, overall, blood 
loss was significantly greater using technique 2 (P=0.002). 
 
(10)  Tests of Statistical Significance: the Chi-Square Test to Compare 

Proportions  
 

The chi-square test is a common test to compare proportions (frequencies) in 2 or 
more groups. Consider the research question: In women eligible for breast screening 
does a personalised letter from the GP improve uptake? A randomised controlled trial 
was undertaken in one practice where women eligible for breast screening were 
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randomised into two groups. One group (the intervention) received a letter from their 
GP encouraging them to attend the breast screening invitation. The other group did 
not receive the letter (control). The null hypothesis is: ‘in women eligible for breast 
screening there is no difference in uptake to an invitation to attend mammography 
from use of a personalised letter from the patient’s GP’.  
 
Of 470 women invited for breast screening 254 (54%) attended. The attendance 
rates were 51.3% in the control group and 56.8% in the intervention group. Is this 
difference in proportions statistically significant? The results are summarised in Table 
6 which is referred to as a 2 x 2 contingency table. 
 

Table 6.  A randomised controlled trial comparing the effects of a personal 
letter from a GP on the uptake of an invitation to breast screening. 

 

Attended for 
Mammography: 

+Letter  
(Intervention) 

- Letter 
(Control) 

Totals 

Yes 134 120 254 

No 102 114 216 

Totals 236 234 470 

 
In each of the four shaded cells we calculate the number of women expected to 
attend if the letter had no effect on their decision. Overall, 254/470 women attended 
(54%). The expected number is calculated for each cell as: 

Column total x Row total / Overall total                 (equation 7) 

For the upper left cell this becomes: 236 x 254 / 470 = 127.5 and the expected values 
for the other cells are: 
Lower left  = 236 x 216 / 470 = 108.5 
Upper right = 234 x 254 / 470 = 126.5 
Lower right  = 234 x 216 / 470 = 107.5 
 
The chi-square statistic, referred to as χ2, is calculated as: 

= ∑(observed - expected)2 / expected   (from the 4 cells)        (equation 8) 

The symbol ∑ refers to ‘sum of’, in this case the sum of the equation for the 4 cells. 
 
In this example, χ2  = 1.42, and P=0.23 (from the stats tables), so a non-significant 
result. The 95% confidence interval for the difference in proportions is -3.5% (GP 
letter reduced uptake) to +14.5% (GP letter increased uptake). 
 
Interpretation:  In this trial there is no evidence that a personalised letter from the 
GP would improve the uptake of breast screening among the population of women 
from which the sample was drawn. 
 
But, a lack of evidence of an effect is not the same as evidence of no effect and 
the 95% confidence interval suggests the letter is more likely to improve uptake than 
reduce it. The options at this stage include planning a larger study with a power 
calculation to determine the sample size needed whereby a difference in uptake of 
about 5% would be statistically significant at P=0.05 or less, assuming the null 
hypothesis can be rejected to reflect a true, positive effect from the letter.  
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(11)  ‘Negative’ studies 
 
Occasionally a trial comparing a drug with a placebo is described as being ‘negative’ 
(P>0.05) implying that the drug is no better than placebo. The drug comparison study 
above in patients with heart failure had a P-value of 0.07 and may have been 
described as a negative trial implying the two drugs were equivalent. However, you 
should be wary of trials described as ‘negative’ as lack of evidence of an effect is 
not the same as evidence of no effect. For example, a study was undertaken on 
the relationship between overuse of mobile ‘phones and the development of brain 
cancer. The results failed to show an association. But, the fact that you do not have 
evidence to show mobile ‘phones are harmful is not the same as stating they are 
safe. (See the article by DG Altman and JM Bland. Absence of evidence is not 
evidence of absence. BMJ 1995; 311: 485) 
 
(12)  Statistical Versus Clinical Significance 
 
It is very important to distinguish between statistical significance and clinical 
significance.  Be wary of results of very large studies where small changes in clinical 
outcomes may be reported as highly significant but have little meaning clinically. 
 
(13) Interpretation of Results from a Drug Trial 
 
Consider the question: Is aspirin effective in reducing the incidence of heart attacks? 
A randomised controlled trial was undertaken in 22,071 men randomised into one of 
two groups. One group took one aspirin tablet a day, the other group took one 
placebo tablet a day. The outcome was the number of heart attacks over 1 year. This 
involved a comparison of proportions and the data are summarised in Table 7. 

Table 7. Results from a randomised controlled trial comparing daily aspirin and 
placebo in the incidence of heart attack 

Group: Heart 
attack 

No Heart 
attack 

n Attack rate 

Placebo 239 10,795 11,034 239/11,034 = 0.0217 
Aspirin 139 10,898 11,037 139/ 11,037 = 0.0126 

 
Can we reject the null hypothesis that the attack rate is the same in both groups? 

Attack rate in placebo group (p1) = 0.0217,   
Attack rate in aspirin group (p2) = 0.0126,   
Difference in attack rates (p1- p2) = 0.0091, P<0.00001 
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The significance test:     this part can be omitted  

z = (p1- p2) / SE (p1- p2)   

SE (p1- p2) =   [ (p1(1-p1)/n1 )  + (p2(1-p2)/n2  ) ] 

SE (p1- p2) =   [ (0.0217 (1- 0.0217) / 11,034 )  + (0.0127 (1-0.0127) / 11,037  ) ] 

  = 0.001749 

z = 0.0091 / 0.001749 = 5.20, P<0.00001  
 

The 95% CI = p1- p2   t (0.05)  x SE (p1- p2) 
 

 = 0.0091  1.96 x 0.001749 = 0.0091  0.0034 = 0.0057 , 0.0125 
 

 
The P-value is <0.00001 so a highly significant result with a less than 1 in 100,000 
chance that we would be wrong in rejecting the null hypothesis of no effect of aspirin. 
 
The 95% confidence interval for the difference in proportions is: 0.0057, 0.0125 so 
we are 95% confident that the true difference in attack rate lies between 0.0057 and 
0.0125. 
 
We can extract other useful statistics from this comparison of proportions. For 
example, the difference in proportions (p1- p2 = 0.0091) and its confidence interval is 
small, but consider the relative risk which is:  0.0217 / 0.0126 = 1.72    

Interpretation:  members of the placebo group were 1.72 times more likely to 
have a heart attack than members of the aspirin group. 

The relative risk reduction (RRR) is the proportional reduction in rates of adverse 
events between an experimental and control group. 
EER = experimental event rate, CER = control event rate   
RRR = |EER-CER| / CER = |0.0126 - 0.0217| / 0.0217 = 0.0091 / 0.0217 = 0.419 or 
42%  
Note: the ‘|’ lines before and after the term EER-CER indicates that we must ignore 
the sign of the difference 

Interpretation:  members of the aspirin group showed a 42% reduction in 
adverse outcome compared with the placebo group. 

The absolute risk reduction (ARR) is the absolute (arithmetic) difference in rates of 
adverse events between the experimental and control group. 
ARR = |EER-CER| = 0.0091 or 0.9% 
This value is used to calculate the number needed to treat (NNT) which is the 
number of patients who need to be treated to achieve one additional favourable 
outcome. The NNT is calculated as the reciprocal of the ARR.  
NNT = 1 / ARR = 1 / 0.0091 = 110 patients.   

Interpretation: we need to give 110 patients aspirin for a year to prevent one 
heart attack. 

In a similar way a study could focus on drug side effects and the results be used to 
determine the numbers needed to harm (NNH). In fact, for aspirin the NNH is about 
400 so that for every 400 patients treated with aspirin for a year we would expect one 
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patient to suffer an adverse effect (? Gastrointestinal bleed or whatever) but to 
prevent a heart attack in about 4 patients.  
 
The NNT and NNH values are useful statistics to be taken into account with costs 
when recommending treatments and when communicating with patients on the risks 
and benefits of a particular medication.   
 

Example (from the introduction):  
In the 1990s a survey was undertaken of NHS Board members who held 
responsibility for commissioning services. A questionnaire was sent with details of 4 
rehabilitation programmes.  Respondents were told that each programme cost about 
the same. They were asked to review the information presented on the outcome of 
each programme and select the best one suitable for funding. The 4 programmes 
with their associated outcomes were: 

Prog 1 – with an absolute reduction in deaths of 3% 
Prog 2 – with an increased survival from 84% to 87% 
Prog 3 – with reduced death rates by 19% 
Prog 4 – 33 patients needed to avoid 1 death 

The information presented gave different criteria on outcomes but, in reality, the 
programmes were identical. 140 board members responded but only 3 identified the 
summary statistics were from the same programme. The authors concluded that, in 
this sample, those charged with commissioning services lacked the necessary skills 
to make informed decisions.  
The rationale: 

Death rate rehab  = 13% (survival 87%) 
Death rate control = 16% (survival 84%) 
Reduction in death rate = 3% 
Proportional reduction in deaths = 3% / 16% = 19% 
NNT = 1 / 0.03 (or 100 / 3) = 33  

See: Fahey et al BMJ 1995; 311: 1056-1059. 

 
(14)  How to Make Sense of Data Presented in Graphs  
 
(14.1)  Assessing the appropriateness of the scales 
 
Data presented in graphical form can sometimes mislead. For example, a paper was 
published in which the authors claimed that infant mortality for a country had fallen 
markedly between 1970 and 1994. They presented a graph (Figure 6) which showed 
a downward trend. When presented with such a graph your eye is first drawn to the 
information in the middle, i.e. the declining slope. But you should also look at the 
scales. The horizontal axis (Year) is appropriate but the vertical axis (IMR, Infant 
mortality rate) is scaled from 23 to 26 deaths / 1000. Hence, this does represent a 
decline but the magnitude of that decline is only 2 deaths / 1000 over the 24 years, 
hardly a ‘marked’ fall. This is further seen if the data are re-plotted with zero on the 
vertical axis (Figure 7). 
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Figure 6. Infant Mortality Rate (deaths / 1000 live births) 

 

 
Figure 7. Infant Mortality Rate (deaths / 1000 live births) re-plotted with  

zero on the vertical axis. 
 
Consider the data plotted in Figure 8 which shows the relationship between % body 
fat and biceps skin fold thickness in adult males. The biceps thickness is plotted on a 
linear scale, i.e. equal increments from 0 to 30 mm. However, the correlation with % 
body fat is not linear but suggestive of a curvilinear relationship. Furthermore, the 
spread of values for the biceps skin fold on the vertical axis increases with increasing 
% body fat. This variation in spread of values is referred to as being heteroscedastic 
and suggests a proportional relationship between the spread (variance) of skin fold 
thickness and % body fat. The analysis of data in this form can be a challenge. 
However, we can improve the situation. The biceps skin fold data is skewed in 
distribution (not bell-shaped) and transforming the data by taking logarithms (see 
Glossary) results in a distribution that fits better with the Normal, bell-shaped 
distribution (Figure 9). Now the relationship between % body fat and the log of the 
biceps skin fold does appear linear and the spread of the biceps data is 
approximately equal whatever the value of % body fat, a pattern described as 
homoscedastic (Figure 10). Compare the pattern of the data as plotted in Figures 8 
and 10. The analysis of data as displayed in Figure 10 is more straightforward. The 
message, again, is to look at the graph’s horizontal and vertical scales to know what 
you have been presented with. Compare the vertical axes in Figures 8 (linear) and 10 
(logarithmic). Note the difference in the size of the gap between adjacent marks. 
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Incidentally, it is possible to transform data from a skewed distribution into a Normal 
distribution using other mathematical functions such as the reciprocal (1/x), or by 
taking an exponent (x2, x3). 
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 Figure 8. Relationship between %body fat and biceps skin fold thickness (mm) 

in adult males  
(linear vertical scale) 
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 Figure 9. The distribution of the biceps skin fold (upper panel) and after 

transforming by taking logarithms (lower panel). 
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(14.2)  Checking for outliers 
 
Check each graph for the presence of outliers (Figure 11). Is it clear how they have 
been dealt with in the analysis? The presence of one or more outliers can have a 
marked effect in the analysis on, for example, estimates of regression slopes and 
correlation coefficients obtained. 
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 Figure 11. Relationship between Weight (kg) and Body Mass Index (BMI, kg/m2) 

in adult males. Note the two outliers. 
 
(14.3) Line graphs, scatterplots, histograms and bar charts 
  
Data can be visually presented in other forms, for example as line graphs and bar 
charts. Here is an example of some research that used a variety of charts for 
representing the results.  
 
In the 1990s a National Service Framework on diabetes was released which stated 
that GPs should actively seek to identify patients with diabetes. An audit was 
undertaken by the Public Health department in one area asking each practice to 
provide data on the number of their patients registered with diabetes. However, 
because, at that time the uptake of computerisation was known to be patchy amongst 
the practices it remained uncertain just how reliable the data would be.  
 
A data collection scheme was set up to study the local prevalence of diabetes and to 
identify those practices which had evidence of poor-quality record keeping. Data 
were collected from five large sentinel practices which had good evidence of high- 
quality electronic record keeping and use of their clinical software. These five 
practices represented about 12% of the resident population. The data were pooled 
and the prevalence of diabetes was calculated for each 5-year age group, by gender 
and plotted in a line graph (Figure 12). These rates were then applied to the age-sex 
registers of each practice in that area to provide estimates of the expected number of 
patients with diabetes. This number was then compared in a scatterplot with the 
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actual number of patients each practice had returned (Figure 13). Most practices laid 
along the ‘line of identity’ where the number of patients recorded was close to the 
number expected. However, some practices were lying well away from the line of 
identity. 
 
The difference between the number recorded and that expected for each practice 
was plotted as a histogram (Figure 14). A few practices had very many more patients 
than expected whilst others had markedly fewer patients than expected. Remember, 
these figures were adjusted for age and gender but not for any other features known 
to influence the prevalence of diabetes (e.g. South Asian ethnicity). 
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Figure 12. The prevalence of diabetes by age and gender. 
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Figure 13. The number of registered patients with diabetes compared with that 

expected for each practice. 
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Figure 14. The difference between the number of registered patients with diabetes  

from that expected for each practice. 
 
Another way of graphing the data was to plot the standardised morbidity ratio (SMR) 
for each practice, that is, the number of patients with diabetes registered divided by 
the number expected, multiplied by 100. This is a notional rate where a value of 100 
indicates the practice had registered the exact number expected. The practices were 
then sorted in order from lowest to highest SMR values and a bar chart generated 
where each bar represented a practice (Figure 15).  
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Figure 15. The standardised morbidity ratio for each practice. A value of 100 

indicates the number of patients registered is equal to the number expected based 
on that practice’s age-sex register. 

 
At one end of the scale a practice had hardly any patients with diabetes recorded on 
its computer (SMR much less than 100). At the other end of the scale a practice had 
an SMR of about 260, or 2-3 times the number expected. What could be the reasons 
for this variation?  How should we interpret these findings? 
 
In these circumstances it is appropriate to first look for technical reasons. In the low 
recording practices is there evidence of under-recording, or the wrong codes being 
used for recording diabetes. The practices may not be using their clinical systems to 
best effect. Are these, perhaps, single-handed practices?  
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In the higher recording practices is there evidence of over-recording, perhaps with 
patients recorded with diabetes when there was only a suspicion of the condition, or 
a family history of it recorded? Again, are the correct codes being used? 
 
In interpreting the SMR the assumption is that practices in the middle with values 
around 100 are ‘doing it right’. The data are adjusted for age and gender. However, it 
may be that the high recording practices have a different ethnic mix of patients. They 
may, for example, have a disproportionate number of South Asians who are known to 
be at higher risk of developing diabetes.  
 
However, there is another reason. The estimates from this study suggested a 
prevalence of diabetes of 1.9% in males and 1.6% in females (all ages). At this time, 
it was accepted that diabetes was under-recognised and it may be that the practice 
with an SMR of about 260 had an active screening programme in place to check for 
diabetes (and pre-diabetes). Hence, their results may reflect the true prevalence of 
diabetes in the community and all the other practices had got it wrong!  
 
The results of these exercises seldom provide clear cut answers but are useful in 
identifying the need for further investigations, including individual practice visits to 
explore differences in results and possible lessons to be learned. 
 
(15)  How to Make Sense of the Linear Correlation Coefficient 
 
The relationship between two variables can be visualised in a plot of one variable 
against the other (see Figures 6, 7, 8, 10, 11 as examples). The strength of linear 
relationships, where the data plotted in a scattergram appears to fit around a straight 
line, can be quantified as the Pearson correlation coefficient (r) which is 
dimensionless (no units) and takes the value from – 1 to +1. A negative correlation 
implies that one variable decreases as the other one increases. A positive correlation 
implies that both variables increase together. A correlation coefficient of +1 occurs 
when both variables are perfectly correlated positively.  A correlation coefficient of –1 
occurs when both variables are perfectly correlated negatively.  Some examples are 
given in Figure 16. 
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r = +1, a perfect linear, positive correlation r = +0.7, a positive correlation 

  
r = – 0.8, a negative correlation r = 0, uncorrelated variables 

  
Figure 16. Examples of typical correlations and the associated correlation coefficient (r) 

 
 
The Pearson correlation coefficient should not be used: 

• if the relationship is non-linear 
• in the presence of outliers 
• when the variables are measured over more than one distinct group 
• when one of the variables is fixed in advance 
• for assessing agreement  

Examples of the inappropriate use of the correlation coefficient are given in Figure 
17. 
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r = 0.9, non-linear (curvilinear) relationship r = 0, non-linear relationship 
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Figure 17. Inappropriate use of the correlation coefficient 

 
The Pearson correlation coefficient should not be used when assessing agreement, 
that is, when trying to decide, for example, how close two sets of measurements are 
to one another, or when comparing two observers reading the same radiographs. 
Consider a study to compare two instruments that measure the same characteristic. 
A series of samples are split and assessed by each instrument. The results are 
tabulated and the correlation coefficient calculated (Table 8). The table displays the 
results under three circumstances, (1) where the two instruments have the same 
calibration which shows perfect consistency and a perfect correlation between them, 
(2) where the calibration differs for one instrument which records a value that is 
double that for the other instrument, and (3) where one instrument has a zero error, 
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that is the instrument does not read zero correctly. For examples (2) and (3) the 
consistency is adrift but the two series of values still retain a perfect correlation. 

Table 8. The fallibility of relying on the correlation coefficient when assessing 
agreement 

 Sample Result 
Instrument 1 

(1) Result 
Instrument 2 

(2) Result 
Instrument 2 * 

(3) Result 
Instrument 2 ** 

1 12 12 24 16 
2 16 16 32 20 
3 9 9 18 13 
4 31 31 62 35 
5 17 17 34 21 
6 22 22 44 26 
7 11 11 22 15 
8 20 20 40 24 
9 19 19 38 23 
10 27 27 54 31 

Consistency: Both instruments consistent Instruments not consistent 
Correlation 
coefficient: 

+ 1 
(perfect correlation) 

+ 1 
(perfect correlation) 

   * calibration error ** zero error 

 
The correct method comparison is to use a Bland-Altman plot (formerly called the 
Oldham Plot, as published by Peter Oldham, a statistician working at the MRC 
Pneumoconiosis unit at Penarth, South Wales in the 1950s). The difference between 
the two readings is plotted against the mean of the two readings (Figure 18).  
 
In Figure 18 (a) the two instruments are consistent; the difference between their 
readings is zero for each pair of observations and the Bland-Altman plot has a flat 
line across the graph crossing the vertical axis at ‘0’.  
 
In Figure 18 (b) the two instruments are not consistent; the difference between their 
readings increases with the mean. A value of 15 on instrument 1 coincides with a 
value of 30 for instrument 2. The Bland-Altman plot shows a positive association 
between the difference and the mean of the paired observations.  
 
In Figure 18 (c) the two instruments are not consistent; the difference between their 
readings is consistent (=4, Table 8) but does not increase with the mean. A value of 
15 on instrument 1 coincides with a value of 19 for instrument 2. The Bland-Altman 
plot shows a flat line across the graph but this time it intersects the vertical axis at a 
value of 4 (the zero error). 
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(a) Both instruments consistent (r=1) Corresponding Bland-Altman plot 

  
(b) Instrument 2: calibration error 

Instruments not consistent (but r=1) 
Corresponding Bland-Altman plot 

  

(c) Instrument 2: zero error 
Instruments not consistent (but r=1) 

Corresponding Bland-Altman plot 

  
Figure 18. Correlation and Bland-Altman plots for the examples in Table 8. 
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(16)  Method comparison and Repeatability Studies 
 
The data from method comparison studies should be analysed with the Bland-Altman 
approach. Similarly, within-person repeatability studies, comparing the results in the 
same person but between different times, should also use the technique. An example 
is given in Figure 19 from a study in children looking at the repeatability of a new 
measurement of bone density at the heel (os calcis). Fifty-three children had their 
bone density measured twice on the same day. The difference in repeated measures 
was unrelated (that is, not correlated) with the mean. In other words, the scatter of 
the differences did not show an association with the mean of the repeated 
measurements. In this example, the mean and standard deviation of the difference 
between repeated measures was 0.0001 and 0.015 g/cm2; respectively. The 95% 
limits of agreement between repeat measures were -0.029 to +0.029 g/cm2. 
 

 

 
Figure 19. Bland-Altman plot of the difference between repeat measures of 

bone density at the heel in 53 children. 
Reference: Chinn et al. Arch Dis Child 2005; 90: 30-35 

 
For further detail see Bland JM, Altman DG  Measuring agreement in method 
comparison studies  Stat Methods Med Res 1999; 8; 135-160. 
 
(17)  How to Make Sense of an Odds Ratio 
 
The ‘odds’ is the ratio of the number of times an event occurs to the number of times 
it does not occur from a given number of chances. It is used to quantify the ‘risk’ of 
something happening. The ‘odds ratio’ (OR) is a comparison of odds between two 
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groups to quantify the ‘relative risk’ of something happening. If the odds are the same 
in the two groups the odds ratio is 1.  
 
Consider the road accident statistics from Scotland in 2007 when there were 282 
fatalities (Table 9). Suppose we wish to calculate the relative risk of being killed if 
involved in a motorcycle accident compared to a car accident. 

Table 9. The number of casualties and fatalities on Scotland’s road, 2007. 

 Casualties Fatalities % deaths 

Car 9953 160 1.6 

Pedestrian 2682 61 2.3 

Motorcycle 1039 40 3.8 

Other  ?? 21 - 

Totals  13,674 ++ 282 - 

 
What are the odds of being fatally injured in an accident when riding a motorcycle 
compared with being in a car?  

Table 10. The number of fatal and non-fatal casualties in car and motorcycle 
accidents, Scotland, 2007. 

 Fatal Non-fatal Number of 
casualties 

Motorcycle 40 999 1039 

Car 160 9793 9953 

Totals  200 10792 10992 

 
For motorcyclists 40 out of 1039 casualties were fatal, which means that 999 were 
non-fatal (Table 10). The odds of being fatally injured if a motorcyclist is therefore 
40/999.  
 
For car occupants160 out of 9953 casualties were fatal, which means that 9793 were 
non-fatal. The odds of being fatally injured if a car occupant is therefore 160/9793. 
 
The ratio of odds = (40/999) / (160/9793) = 2.45 and the 95% CI = 1.72 to 3.48 
 
Interpretation: we are 95% confident that, when involved in a traffic collision a 
motorcyclist has a relative risk of being fatally injured that is between 1.7 and 3.4 
times greater than that of a car occupant.  
 

Detailed calculations to derive the 95% CI of an OR         this part can be omitted 
The ratio of odds = (40/999) / (160/9793) = 2.45  and loge (OR) = 0.896 

SE (loge (OR)) =  (1/40 + 1/160 + 1/999 + 1/9793) = 0.179869  

95%CI = 0.896 +/- 1.96  0.179869 = 0.5435, 1.248 
Take antilogs to get the 95%CI which is 1.72 to 3.48 

 
Odds ratios are commonly derived from case control studies. One such study looked 
at the relationship between maternal BMI and the risk of stillbirth. Here, a ‘case’ was 
a mother who had a stillbirth. She was matched with a woman who had not had a 
stillbirth (‘control’). Cases and controls were matched for characteristics known to be 
associated with stillbirth, such as parity, age and gestation. Women were grouped 
according to their BMI and the odds ratio calculated for the relative risk of a stillbirth 
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for women in each BMI category compared to the reference category of 18.5 – 25 
kg/m2. An odds ratio of 1 implies no difference in risk between cases and controls. 
The results showed that the risk of a stillbirth increased with increasing levels of BMI 
(Figure 20).  
 
Interpretation: Where the 95% confidence interval crosses the odds ratio (OR) line 
of 1.0 the result is not statistically different at the 5% level (P>0.05). Where the 95% 
confidence interval does not cross the OR line of 1.0 the result is significantly 
different between cases and controls with P<0.05. This was the case for women with 
a BMI between 25 and <30, between 30 and <35, between 35 and <40 and if >=40. 
The increasing risk associated with an increasing degree of maternal obesity is good 
evidence of a causal relationship between maternal BMI and the risk of stillbirth. 
 
Note: the length of each confidence interval is not equal on either side of the mean 
OR (the filled in circle in Figure 20). This is because the calculation of the confidence 
intervals involves use of a logarithmic function (see the example calculation of a 95% 
CI for an odds ratio above if you really need to understand this more).  

 

 
Figure 20. Odds ratio and 95% confidence interval for risk of stillbirth against 

maternal Body Mass Index (BMI) 
 
(18)  Run Charts and Control Charts 
 
A run chart shows the change in a variable or outcome over the course of a period of 
time. Examples include weekly DNA (‘did not attend’) rates in outpatient clinics, 
monthly surgical infection rates in a particular hospital and annual stillbirth rates in a 
maternity unit. They are simple plots, involve no statistics and can be created 
prospectively as time progresses (Figure 21). A run chart can be created from 
historical data and include the average value of the measure in question (Figure 22). 
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Figure 21. A simple run chart showing the number of missed appointments at an 
outpatient clinic. The chart can be updated simply each week. 
 
 
 

 
Figure 22. Number of new certifications for blindness due to diabetes in a single 
Scottish Health Board, 2000 – 2019. The chart includes the average over the period 
(4.1 per year). 
 
Control charts (also called Shewhart charts) are similar to run charts in that they 
monitor trends in real time but include a measure of statistical variability and are used 
in assessing quality control. They help determine when a process can be considered 
‘out of control’, particularly early so that special measures can be introduced to 
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prevent further deterioration in the process. The degree of variability can be 
separated into ‘common cause’ and ‘special cause’ variation. Common cause 
variation is attributed to the usual, natural changes expected in a process whereas 
special cause variation suggests the process is out of control, having been influenced 
by some unusual activity. Examples include hospital acquired infections, patient 
satisfaction surveys, falls surveillance, hospital mortality rates etc.  
 
Control charts include upper and lower limits describing the statistical variation to be 
expected (typically, as 2 or 3 standard deviation limits).  Rules are needed to define 
the circumstances when the process is considered out of control. Use of 2 standard 
deviations as a limit to define ‘out of control’ may result in too many false alerts, 
whereas use of 3 standard deviations may be over-cautious and miss important 
events.  
 
There are 7 different versions of control charts depending on the type of data 
(attribute or continuous). Attribute data refer to discrete, countable events such as 
the number of surgical complications, the number of prescription errors etc. 
Continuous data relate to non-discrete measures such as waiting times, length of 
hospital stay etc. 
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Example:   Each month staff on a medical ward monitored the number of falls and 
created a control chart of this number as a fraction of bed occupancy using the 
number of patient-days. The chart was reviewed each month to identify ‘special 
cause variation’. 
   
Month  Patient-days  N of falls Fraction (= falls per patient-day) 
1       1048     1  1/1048 = 0.000954 
2         896     4  4/896 = 0.004464 
3         918     3  3/918 = 0.003268 
4         995     4  4/995 = 0.004020    …..etc 
 

 
Figure 23. Number of falls as a fraction of the number of patient-days on a ward over 
13 months. The solid horizontal line represents the average fraction. The upper 
dotted line represents 3 standard deviations (sigma level=3). All but one point is 
within the normal, expected variation (common cause). The fraction for Month 11 
exceeded the upper limit and indicated a ‘special cause’. This was picked up early 
and changes in practice made in month 12 to reduce the incidence of falls.  
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Another example:  It is generally recommended that laboratory workers should not 
spend more than 2 hours per day engaged in manual, repetitive pipetting. A review of 
times spent pipetting was done for a hospital laboratory worker engaged in a process 
to screen biological material. 
 

Month  Days  Days where pipetting  Proportion 
  at work time was =>2 hours  
Jan       5       0    0/5 = 0 
Feb    20       7    7/20 = 0.35 
Mar    23       5    5/23 = 0.22 
Apr    19       8    8/19 = 0.42 
May    24       8    8/24 = 0.33 … etc 
 

 
Figure 24. Number of days a laboratory worker was engaged in manual pipetting for 
more than the recommended 2 hours a day as a proportion of the number of days 
worked each month, January 1999 to February 2000. The solid horizontal line 
represents the average proportion. The upper dotted line represents 2 standard 
deviations (sigma level=2). In February 2000 the laboratory worker experienced wrist 
pain associated with excessive manual pipetting that occurred because two 
colleagues who shared the work were on sick leave (special cause). The analysis 
confirmed that the proportion actually exceeded 3 standard deviations (rule 
violations).  
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(19)  Funnel Plots  
 
Funnel plots are used to identify publication bias in meta-analyses undertaken as 
part of a systematic review where the outcomes from multiple, randomised controlled 
trials are combined in a single assessment of an intervention. Publication bias (more 
correctly non-reporting bias) represents a threat to the interpretation of an analysis 
when it identifies a failure of publication of papers that, in general, have shown a 
smaller effect or a negative effect of the intervention under investigation. The effect 
size of each study is plotted as an odds ratio on the horizontal axis against a 
measure reflecting that study’s sample size or precision (standard error), on the 
vertical axis. The plot will resemble a funnel in the absence of publication bias. A 
distorted funnel is evidence that important studies are missing (non-reporting bias). A 
dependence on published papers that show only a positive effect will overestimate 
the overall impact of the intervention under review (see “Funnel Plots as used in 
meta-analyses” in Further Reading below for more detail of their use in systematic 
reviews). 
  
Funnel plots are also used to compare performance between health care providers 
seeking to identify outliers in an outcome of interest. For example, in 2012 the annual 
report on maternity outcomes amongst Scottish Health Boards identified NHS Fife as 
an outlier in the statistics on stillbirths. A funnel plot was created showing the 
average rate of stillbirth for each Health Board over a 5-year period plotted against 
the average number of births over the same period (Figure 25).  
 

 
Figure 25. Average Stillbirth Rate (stillbirths/1000 births), 2008 – 2012, by NHS 
Health Board in Scotland. NHS Fife was an outlier compared to the other Boards, 
lying more than 2 standard deviations above the Scottish average. 
Source: Scottish Perinatal and Infant Mortality and Morbidity Report, 2012. Healthcare Improvement 
Scotland, published March 2014. 

 
The average stillbirth rate across Scotland is about 5 / 1000 births, or about 1 in 200 
births. The number of births varies considerably between Boards and, as expected, is 
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larger in Boards with larger populations. These Boards would also expect to have a 
larger number of stillbirths but the rate of stillbirths should be similar to the average 
expected. However, the variability, as reflected in the standard deviation, will vary 
with the number of births, being relatively greater when the number of births is low. 
Hence, the lines delineating 2 and 3 standard deviations in Figure 25 are curved, or 
‘funnelled’. For example, compare the high variability (wider ‘funnel’) of Orkney and 
Shetland (where the average number of births is low) with the lower variability 
(narrower ‘funnel’) of Lothian and Greater Glasgow & Clyde (where the average 
number of births is much higher). 
 
Stillbirth rates in Health Boards vary year to year. The average rate, 2008 – 2012, 
across the whole of Scotland was 5.08 stillbirths / 1000 births. The highest average 
rates were for Orkney, Fife and Borders, all above 6 /1000 births (Table 11, Figure 
26). The simple bar chart of average rates in Figure 26 identifies these Boards as 
having excessive mortality. However, stillbirths are, fortunately, rare events and rates 
based on small numbers can be misleading (see section 3 above). The funnel plot 
allows a comparison of Boards taking into account the difference in variability arising 
from a difference in the average number of births between Boards. Hence, Orkney 
and Borders were not statistical outliers though Fife was, due mainly to particular 
high rates in 2008 and 2010 (Table 11).   
 

  Table 11. The Stillbirth Rate, 2008 – 2010, by NHS Health Board.  

NHS Board 2008 2009 2010 2011 2012 Average 

Scotland 5.4 5.3 4.9 5.1 4.7 5.08 

Ayrshire & Arran 4.3 4.6 5.2 4.4 5.9 4.88 

Borders 7.0 7.7 6.0 5.4 5.2 6.26 

Dumfries & Galloway 4.9 5.3 5.5 0.7 3.6 4.00 

Fife 6.9 5.5 8.3 5.6 5.9 6.44 

Forth Valley 5.2 3.3 4.8 5.0 4.0 4.46 

Grampian 4.9 4.5 4.0 4.1 5.1 4.52 

Greater Glasgow & 
Clyde 5.6 5.4 5.0 6.6 4.5 5.42 

Highland 4.2 7.2 3.7 4.8 6.3 5.24 

Lanarkshire 5.2 6.6 5.6 4.4 3.9 5.14 

Lothian 4.8 4.8 4.9 4.6 5.1 4.84 

Orkney 13.8 10.0 0 0 9.9 6.74 

Shetland 0 14.1 0 12.2 0 5.26 

Tayside 7.4 5.2 3.0 5.2 2.6 4.68 

Western Isles 0 0 0 0 0 0 
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Figure 26. Bar chart of the average stillbirth rate (stillbirths/1000 births) by Health 
Board, Scotland, 2008 – 2012.  
 
(20)  Common Pitfalls in Published Statistics 
 
Generally, it is safe to assume that a paper that includes a statistician amongst the 
authors will be robust in its study design, analysis of the data and interpretation of the 
findings. When this is not the case you should carefully read the methods and results 
sections to look for common mistakes. For example,  

(a) Is there a power analysis to justify the choice of the sample size? 
(b) Have the authors made a statement about the treatment of missing data or 

outliers?  
(c) Have the authors checked the distribution of the data and used appropriate 

tests of significance? Parametric tests such as the t-test are used for data that 
are Normally distributed (bell-shape). Non-parametric tests such as the Mann 
Whitney test are used for data that are not bell-shaped in distribution (some 
details of this and other non-parametric tests are in the NHS Fife Study Guide 
How to choose a statistical test). If using a t-test do the data meet all the 
assumptions?  (see section 9, page 12 above) 

(d) If the data require a paired analysis (e.g. a before and after study) has the 
appropriate t-test been used? Remember, use of a paired analysis tests the 
hypothesis that the mean change does not differ from zero. Although the initial 
and final values may not be Normally distributed it is often the case that the 
change is Normally distributed and use of a parametric, paired t-test is safe. 

(e) Have the authors used a two-tailed or one-tailed test of significance? A two-
tailed test will test for changes in either direction whereas a one-tailed test 
only tests for an effect in one direction. Generally, you should use a two-tailed 
test and not assume the effect of some intervention will only ever be in one 
direction. As an example, a leaflet designed to allay fears in women from 
receiving an invitation to have a repeat smear test might actually increase 
anxiety!  If, however, the effect of an intervention can only be in one direction 
then you should use a one-tailed test. For example, in a study of an 
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intervention to increase fertility in infertile couples you can only increase 
fertility, not reduce it.  

(f) In comparing change over time in two or more groups have the authors 
adjusted for any initial differences between groups? 

(g) In a randomised controlled trial have the authors used an intention to treat 
analysis? This is where the patients’ data are analysed in the groups to which 
they were originally assigned. 

(h) Have the authors presented confidence intervals along with P-values? 
(i) Have the authors reported correlation coefficients? If so, is use of the linear 

correlation coefficient justified? Remember, correlation does not imply 
causation so have the authors been circumspect in interpreting statistical 
associations between variables? 

(j) Have the authors adjusted for multiple testing using, for example, the 
Bonferroni correction (see Glossary)?  The more tests / comparisons you run 
on a set of data the more likely you are to obtain some spurious findings just 
by chance alone. 

(k) Have the authors reported subgroup analyses and, if so, are they justified and 
appropriately powered? 

 
(21)  Summary 
 
Making sense of numbers can be challenging if you lack the necessary confidence. 
Whatever work you do as a health professional you will be presented with numerical 
information and be expected to understand it. The simple message is to be very 
careful when given such data and ‘think beyond the numbers’. Alternative 
explanations may exist so be cautious in blindly accepting the authors’ interpretation 
and decide for yourself if the numbers justify the conclusions. Remember, no amount 
of clever statistics can salvage a badly designed, biased study. Hopefully, this 
account will help you develop that confidence needed. Now go back to the 
statements made in the introduction (page 2) to see if you have a better grasp of the 
content! 
 

(22)  Further Reading 
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Essential Medical Statistics. 2nd ed. Betty Kirkwood & Jonathan Sterne, 2003, 
Blackwell Scientific Publications. 

Essential Statistics for Medical Examinations.  2nd ed. Brian Faragher and Chris 
Marguerie, 2005, PASTEST 

Funnel Plots as used in meta-analyses. See Page MJ, Higgins JPT, Sterne JAC. 
Chapter 13: Assessing risk of bias due to missing results in a synthesis. In: 
Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA 
(editors). Cochrane Handbook for Systematic Reviews of Interventions version 
6.0 (updated July 2019). Available from www.training.cochrane.org/handbook.  

Interpreting Statistical Findings. A guide for health professional and students. Walker 
J, Almond P. 2010. Open University Press. 
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Medical Statistics at a Glance. 4th ed. Aviva Petrie & Caroline Sabin, 2019, Blackwell 
Publishing. 

Practical Statistics for Medical Research. 2nd ed.  Douglas G Altman, 2011, Chapman 
and Hall. 

Statistical Questions in Evidence-Based Medicine. Martin Bland & Janet Peacock, 
2000, Oxford Medical Publications. 

The Art of Statistics. Learning from data. David Spiegelhalter, 2019, Pelican Books. 

 

 
(23)  Glossary     Sources: adapted from A-Z of Medical Statistics. Pereira Maxwell, 
and Medical Statistics at a Glance. 3rd ed. Aviva Petrie & Caroline Sabin (see Further 
reading). 
 

Bonferroni 
correction 

A procedure for adjusting the P-value in a statistical analysis 
involving multiple significance testing. When testing, for 
example, 20 different measures between two groups it is likely 
that at least one measure will differ statistically at the 5% level 
by chance alone and may not represent a true difference 
between those groups.   

Chi-squared test A significance test for comparing two or more proportions from 
independent groups. The observed proportion in each group is 
compared with the expected proportion based on a null 
hypothesis.  

Confidence 
interval, CI 

A range of values in which the true mean for a population is 
likely to lie. It usually has a proportion assigned to it (for example 
95%) to give it an element of precision. 

Continuous 
variable 

A numerical variable which can theoretically take any value 
within a given range (for example, height, weight, blood 
pressure).  

Control Chart A tool used for quality control in which a measure reflecting a 
process is plotted against time with statistical limits imposed on 
the chart to identify unusual causes of variation in performance. 

Correlation 
coefficient 
(Pearson’s) 

A measure of the linear association (a straight line in a scatter 
plot) between quantitative or ordinal variables.  

Data cleaning The process of trying to find errors in the data set. 

Database A systematised collection of data that can be accessed and 
manipulated by a stats package such as SPSS.   

Degrees of 
freedom 

A concept used with statistical tests that refers to the number of 
sample values that are free to vary. In a sample, all but one 
value is free to vary, and the degrees of freedom is then N-1. 
For example, consider a set of four values with the mean of 5 
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and a sum of 20. If you are asked to ‘invent’ the individual four 
values then you are only ‘free’ to invent three of them as the 
fourth must ensure the sum adds to 20 (note, it can be a 
negative number). 

Effect size A standardised estimate of the treatment effect calculated by 
dividing the estimated difference between two groups by the 
standard deviation of the measurements (means or proportions). 
In the context of power calculations the effect size is the same 
as the standardised difference (see below). 

Funnel Plot 
A tool to identify publication bias in meta-analyses (where the 
effect size of each study is plotted as an odds ratio against a 
measure reflecting that study’s sample size or precision) and to 
identify statistical outliers when comparing performance between 
health care providers.   

Frequency 
distribution 

A display of data values from the lowest to the highest, along 
with a count of the number of times each value occurred. 

Heteroscedasticity Unequal variances between two or more subgroups 

Histogram A graphic display of data frequency using rectangular bars with 
heights equal to the frequency count. 

Homoscedasticity Equality of variances within two or more subgroups 

Hypothesis A statement of the relationship between 2 or more study 
variables. See Null Hypothesis 

Logarithm The logarithm of a number is the exponent (power) to which 
another fixed value, the base, must be raised to produce that 
number. For example, the logarithm of 1000 to base 10 is 3 
because 10 to the power of 3 (103 = 10 x 10 x 10) is 1000 

Margin of error A term used by pollsters to estimate the error from a survey of 
opinions. In this account it is a range of values equivalent to 
twice the standard error on either side of the estimated 
population mean.  It is equivalent to the 95% confidence interval.  

Mean The average value or measure of central tendency. The mean is 
obtained by dividing the sum of values by the total number of 
values. 

Median Middle value when data are ordered.  The value that splits the 
sample in two equal parts. 

Meta-analysis A statistical analysis whereby results from individual studies in a 
systematic review are combined to produce an overall effect of 
interest. 

Mode The value that occurs most frequently. 

Non-parametric Refers to data and tests of significance which makes no 
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assumptions about the distribution of the data.  Data that are 
skewed in distribution (to the right or left) are described as non-
parametric. 

Normal (Gaussian) 
distribution 

A continuous probability distribution that is bell-shaped and 
symmetrical; its parameters are the mean and variance. 

Null Hypothesis, 
HO 

The statement that assumes there is no difference between two 
populations being compared, or no relationship or association 
between two variables in a population. An experiment may be 
undertaken to see if HO can be rejected in favour of an 
alternative hypothesis, HA.    

Outlier Values in a set of observations which are much higher, or lower, 
than the ‘average’ and lie well away from the rest of the data (in 
the tail of the distribution).  

Parameter A measurable characteristic of a population (e.g. average and 
standard deviation of blood pressure for a group of individuals). 

Parametric Refers to data in which the distribution is bell-shaped (Normal or 
Gaussian). Statistical tests that rely on data being distributed 
this way are called parametric tests.   

Power The probability of rejecting the null hypothesis when it is false. 

Power calculation Refers to a way of calculating the number of subjects needed for 
the results of a study to be considered statistically significant. 

Protocol A full written description of all aspects of a study – the ‘recipe’. 

Publication Bias The tendency for journals to preferentially publish papers citing 
mainly positive (statistically significant) findings. 

P-value See Significance Level  

Regression 
coefficient 

The slope of the line of best fit in a plot between two variables. It 
represents the increase in an outcome variable from a unit 
increase in the predictor variable. For example, in a plot of total 
lung capacity against height in women the regression coefficient 
is 6.60 litres/metre which means that for every increase in one 
metre in height the lung capacity increases by 6.60 litres. 

Significance level 
(P-Value) 

In the context of significance tests, the P-value represents the 
probability that a given difference (or a difference more extreme) 
is observed in a study sample (between means, proportions etc) 
when in reality such a difference does not exist in the population 
from which the sample was drawn. In effect it’s the probability of 
getting a wrong answer by deciding that two populations differ in 
some way when in fact they do not. In statistical parlance, it is 
the probability of rejecting a null hypothesis of no difference 
between two populations when in fact the null hypothesis is true. 
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Spreadsheet A computer program (e.g. Excel) that allows easy entry and 
manipulation of figures, equations and text.    It displays multiple 
cells that together make up a grid consisting of rows and 
columns, each cell containing either text or numeric values or a 
formula that defines how the contents of that cell is to be 
calculated.   Spreadsheets are frequently used for financial 
information because of their ability to re-calculate the entire 
sheet automatically after a change to a single cell is made. 

Standard 
deviation, SD 

A measure of variability of data. The standard deviation is the 
average of the deviation of individual values from the mean 
measured in the same units as the mean. 

Standard error (of 
the mean), SE 

A measure of precision of the sample mean. Estimates of a 
population mean value will vary from sample to sample. The 
distribution of these values is called the sampling distribution. 
The SE is the ‘standard deviation’ of this distribution.  

Standard score (z-
score) 

Refers to how many standard deviations away from the mean a 
particular score is located. 

Standardised 
difference 

A ratio equal to what is considered the clinically important 
treatment difference divided by the standard deviation of the 
measure in question. 

T-test A statistical test used to determine if the means of 2 groups are 
significantly different. 

Type I error (alpha 
error) 

The probability of making the wrong choice by rejecting a null 
hypothesis when it is true. In other words, a type I error occurs 
when it is concluded that a difference between groups is not due 
to chance when in fact it is (reject a true null hypothesis).Also 
relates to the significance level (P-value). 

Type II error (beta 
error) 

The probability of making the wrong choice by accepting a null 
hypothesis when it is false. In other words, a type II error occurs 
when it is concluded that differences between groups were due 
to chance when in fact they were due to the effects of the 
independent variable (accept a false null hypothesis).This 
probability becomes smaller with increasing sample size.  

Variable Any quantity that varies (e.g. blood pressure). 

Variance A measure of variability of data equal to the square of the 
standard deviation. 

Z-score A standard score, expressed in terms of standard deviations 
from the mean. 

 
 


