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Disclaimer

| am an epidemiologist, not a statistician. These notes are written from my experience
of working in the field of medical research for over 40 years. | have sought to give
what | hope is a clear and simple explanation of some rather complex statistical
principles. |1 do not profess to be an expert in statistics and a ‘proper’ statistician
reading this guide may take issue with some of my explanations. Accordingly, | would
encourage the reader to refer to one of the many excellent introductory books
available on statistics for further guidance; some titles are given in the references
and further reading.
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(1) Overview and learning outcomes

This guide is for those who need to interpret numbers but have little or no knowledge
of statistics. The content is appropriate for those who may need to critically appraise
published (quantitative) articles. The focus is on interpreting rather than generating
the results of a statistical analysis. However, some detail on the statistics is provided
to facilitate the explanations, though this can be omitted without loss of the overall
message. Examples are used throughout and at the end of reading this guide you
should be able to:

¢ Distinguish between absolute and relative measures

e Describe and interpret a confidence interval

e Explain the distinction between confidence intervals and P-values
Interpret the results of one-sample, unrelated (independent) and related
(paired) t-tests

Understand the limitations of the t-test

Interpret the chi-square test for comparing proportions

Interpret and make sense of the results from a drug trial.

Make sense of data presented in graphs

Understand the concept of linear correlation

Interpret and make sense of the odds ratio

Interpret and make sense of a Run Chart and Control Chart
Interpret and make sense of a Funnel Plot

Be aware of some of the common pitfalls in published statistics

The terminology can also be challenging so we have provided a glossary at the end.

Associated NHS Fife study guides:
7 How to plan your data collection and analysis
10 An introduction to medical statistics
11 How to calculate sample size and statistical power
12 How to choose a statistical test
14 An introduction to SPSS

(2) Introduction

Statistics is the science of assembling and interpreting numerical data. It is
concerned with estimation and with describing uncertainty. We use descriptive
statistics to estimate, for example, the prevalence of asthma in children within a
community, the proportion of patients with hospital acquired infection, the length of
stay (in hospital), the demographics of patients attending a particular clinic, the
benefit of a drug on some physiological response etc. When presented with such
figures it can be a challenge to make sense of them in terms of what they tell you
and, just as importantly, what they do not. Consider the following typical statements:

« Mortality in Group A was 60% higher than that in Group B
« The mean length of stay was 4.3 days but the median was only 1 day

« Mean age of disease onset was 38.2 years in men and 43.3 years in women
(mean difference 5.1 years, 95% confidence interval 3.5 to 6.7, P=0.009,
unmatched t-test)
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« The average reduction in diastolic blood pressure was 9 mm Hg (95% CI 4.5
to 13.1, P<0.01, paired t-test)

* Lung size correlated strongly with height in adult men (r=0.71, P=0.001)

« The number needed to treat with drug A was 38 whereas that for drug B was
12

» As an example of a real problem, consider the following:

In the 1990s a survey was undertaken of NHS Board members who held
responsibility for commissioning services. A questionnaire was sent with details of
4 rehabilitation programmes. Respondents were told that each programme cost
about the same. They were asked to review the information presented on the
different outcomes and select the best programme suitable for funding. The 4
programmes with their associated outcomes were:

Prog 1 — with an absolute reduction in deaths of 3%
Prog 2 — with an increased survival from 84% to 87%
Prog 3 — with reduced death rates by 19%

Prog 4 — 33 patients needed to avoid 1 death

Which programme would you have chosen? (we’ll return to this question in a later
section)

Confused? This guide should help you identify the strengths, limitations and
interpretation of these types of statistical results.

A single statistic will have only limited utility. For example, if you are told the average
height of school children aged 13 years is 152 cm this ignores any difference
between boys and girls and you cannot assume that all children are this height. Also,
the single value of 152 cm tells you nothing about the minimum or maximum heights
of the group of children. So, what figures do you need to describe fully these details
for a population?

Any set of measurements that describes data from a sample has two important
properties: the average, central or ‘typical’ value and the spread of values about that
average. We use descriptive measures to describe ‘typical’ values (also called
measures of location), such as the mean, median, mode and the spread of values
such as the variance, standard deviation (SD), interquartile range (IQR) and
confidence intervals of the mean and other estimates. You will hear these terms used
widely in describing data and further details of their derivation are given in the NHS
Fife study guide ‘Introduction to Medical Statistics’.

Other ways of describing data include bar charts showing frequencies for different
groups within a sample, histograms for a variable showing frequencies of data split
into ranges, pie charts depicting proportions and scatterplots exploring the
relationship between two quantitative variables.

(3) Awareness of Numbers: Absolute and Relative Measures

Numbers may be presented as absolute figures (e.g. the number of people who died
from road accidents in a year) and in relative figures (e.g. the proportion, or
percentage, of people who were aged 18-25 years, amongst those who died in road
accidents in a year).
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Be wary of the use of percentages in headlines as the way summary data are
presented can be misleading. In the mid-1970s Barbara Castle, the Minister of
Health, announced a 30% salary increase for student nurses. This relative amount
was generous and looked impressive but student nurses were poorly paid and 30%
of a small, absolute number is itself still a small number! A percentage salary
increase of 10% looks impressive when inflation is running at about 2% but work out
for yourself what is the absolute increase in salary for those currently employed
(2020) on the National Minimum Wage which, for a person aged over 25 years is
£8.72 per hour. A 10% increase amounts to 87p per hour.

Consider the headline “70% of deaths from Swine flu are in women”. Think about
what it is you are being presented with. Make the distinction between absolute and
relative figures. When you are given a percentage to consider ask what base number
it relates to. In this example is the 70% estimate based on 10 or 100 cases. For an
extra woman (instead of a man) dying from Swine ‘flu the percentage for the group of
10 patients would increase from 70 to 80%; for the group of 100 the percentage
would increase from 70 to 71%.

In the 1990s the Department of Health published routine summary statistics on health
service activity and outcomes for different trusts in England. A journalist picked up on
one aspect and the following newspaper headline appeared:

“Infant mortality in Gateshead 50% higher than national average.”
This caused great concern locally, particularly amongst parents of new born babies.

The infant mortality rate is the number of infants who die in their first year of life as a
proportion of the total number of live births. The rate is considered a good reflection
of the state of the health services in a country. In the UK infant mortality has dropped
markedly since 1900 when the rate was about 140 / 1000. At the end of the century it
was about 6 / 1000 (or about 4% of the rate at the start of the century). How does this
relate to numbers? The population of the UK has grown over the century but the
number of births has declined. In England & Wales in 1901 the commonest causes of
death in infants under a year of age were atrophy, debility and premature birth. The
total number of infants dying was huge at 140,648. In 1998 the commonest causes of
death in infants under a year of age were ‘Neonatal’ and Sudden Infant Death
Syndrome (SIDS). In total 3,625 infants died (or about 2%2% of the 1901 total) (Table
1).

How else could these figures be reported? A comparison of rates differs from a
comparison of the absolute number of deaths (Table 2). This is because the number
of births in each year is itself different, about 1,005,000 in 1901 and about 600,000 in
1998.
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Table 1. The number and principal causes of death in infants aged 0-1 years,
England and Wales, 1901 and 1998.

Principal cause and number of deaths, England and Wales

1901 1998

Cause Deaths Cause Deaths
Atrophy, debility 18,685 Neonatal 2,418
Premature birth 18,562 Sudden Infant Death (SID) 234
Convulsions 15,513 Anomalies of the heart 42
Diarrhoea 13,233 lll-defined Intestinal infection 41
Enteritis 13,084 Asphyxia 39
Bronchitis 11,694 Other diseases of the lung 39
Bronchial pneumonia 6,228 Meningococcal infection 25
Whooping Cough 4,793 (Whooping Cough 2)
Others 38,856 Others 785

Total 140,648 Total 3,625

Table 2. Alternative ways of reporting data on change in infant mortality,
England and Wales, 1901-1998

1901 1998
Number of deaths age <1 yr 140,648 3,625
Rate / 1000 live births 140 6
Comparison of rates 6/140 (%) = 4.3%, or 95.7% reduction,
or 140/6 = 23 fold decrease
Comparison of number of 3,625/140,648 = 2.6%, or 97.4% reduction,
deaths or 140,648 / 3,625 = 39 fold decrease

Consider the statement “Infant mortality in Gateshead 50% higher than the national
average” and what this means in terms of the actual number of infants dying. In
absolute terms it was a difference between 9/1000 live births (in Gateshead)
compared with a national average of 6/1000 live births (Table 3).

Table 3. A comparison of relative and absolute measures of infant mortality

National average Gateshead
Rate / 1000 live births 6 9
Comparison of rates 9/6 (%) = 150%, or 50% increase

or 9/6 = 1% fold increase
Absolute terms 3 extra deaths per 1000 live births

The journalists were correct in that infant mortality in Gateshead was 50% higher
than the national average (the relative comparison). But the difference in absolute
terms worked out at just 3 extra deaths per 1000 live births. The Director of Public
Health was interviewed on local television and tried hard to make this distinction
stating that the extra deaths were small in number and related to impoverished living
arrangements, poor social circumstances, poverty etc, common to city dwelling
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communities, but each time the journalist would emphasise the relative statistic. The
message here is:

Be wary of rates based on small numbers.
Always consider the base number on which a percentage or rate is based!

(4) Awareness of Numbers: The lllusion of Accuracy

An audit of emergency admissions to a surgical unit was undertaken to estimate the
proportion of GP referrals that were considered inappropriate. Ninety-three
consecutive admissions were reviewed over four weeks and 18 were considered
inappropriate by the surgeons. The proportion is 18/93 but this was reported as
19.3548 %. The reporting of figures to 4 decimal places implies a level of accuracy
that, in this case, is simply not justified. Even reporting it to 2 decimal places is
inappropriate because the sample is relatively small and you cannot estimate the
accuracy of the true proportion with such a small sample. In this example, 19 % is
perfectly satisfactory. The message here is:

Be wary of numbers reported to many decimal places which can give a
spurious illusion of accuracy.

(5) Awareness of Numbers: The Level of Uncertainty

Statistics is concerned with estimation and with describing uncertainty. Each estimate
from a sample is a snapshot of what you think is the true value in the population from
which the sample was drawn. In the example above this is the proportion of
inappropriate referrals being made by GPs to a local hospital surgery unit. The level
of uncertainty is described in a confidence interval which is a range of values in
which we believe the true value is likely to lie. It is common practice to report the 95%
confidence interval (95% CI) which is interpreted as: ‘we are 95% confident that the
true value lies between x and y’ (see Glossary). In the example above where the
proportion was 19% based on 93 observations the 95% Cl is 11% to 27%. A different
sample of similar size would yield a different proportion but we would expect the
estimated proportion to lie within this range of values (confidence interval). Now, it
may be that the surgeons consider this range to be too wide. They decide to repeat
the audit to obtain a better estimate, and narrower confidence interval. This would
involve a larger study but the numbers needed would depend on the width of the
confidence interval the surgeons decided was optimal. The message here is:

A single estimate must be interpreted in relation to its confidence interval and
to increase precision you must increase the sample size.

Some information on the principles behind the derivation of confidence intervals is
given below. However, more specific detail on how to calculate a confidence interval
and how to determine the sample size needed for a study are given in the NHS Fife
Study Guides: ‘An Introduction to Medical Statistics’ and ‘How to Calculate Sample
Size and Statistical Power’.

(6) Confidence Intervals for a Continuous Variable

A continuous variable is one which can theoretically take any value within a given
range (for example, height). When estimating some characteristic in a population
(e.g. average height) we take a sample that we hope is representative of the
population and calculate summary statistics from the sample. We can calculate the
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average value (the mean) for the characteristic and the standard deviation (SD)
which is a measure of the variability in the data. The SD is the average of the
deviation of individual values from the mean and describes the spread of data around
the mean. The SD is calculated from the data itself and, in data that are distributed in
a bell-shape (also called the ‘Normal’ or Gaussian distribution) about 68% of the
observations will have a value between one SD below and one SD above the mean.
Similarly, about 95% of the observations will have a value between 1.96 SD below
the mean and 1.96 SD above the mean (Figure 1).

The mean (X) and SD from the sample should be a good estimate of the true mean
(W) and SD (o) of the population from which the sample is drawn, provided the
sample is representative. However, the sample mean is unlikely to be exactly the
same as the population mean. A different sample would give a different estimate of
the population mean and the difference would be due to sampling variation. The
relationship between the population true mean and SD and that estimated from the
sample is shown in Table 4.

Table 4. Relationship between a sample and the population from which itis

drawn
Reality, ‘Truth’ Estimate
Population: Size =N Sample: size ‘n’

Mean: M X

SD: o SD

l

Standard Error of the mean, SE (X)=SD h/n
l
Confidence Interval of the estimated mean

The estimated SD is used to derive the standard error (SE) which is a measure of the
accuracy of the estimated mean (X).

Standard Error of the mean, SE (X) = SD of sample /v/n (equation 1)
where ‘n’ is the number of observations in the sample.

The size of the SE depends on the degree of variation in the sample and on the size
of the sample; the larger the sample, the smaller the SE. The SE in turn is used to
calculate the confidence interval for the estimated mean. The 95% confidence
interval is calculated as:

95% CI = sample mean + 1.96 x SE (X) (equation 2)

Using 1.96 to define the interval is acceptable when you have a sufficiently large
sample (>30) but the situation is different when you have much smaller samples.
Then you use a larger value than 1.96, taken from the t-distribution, to define the
interval because, when based on small numbers (<30) there is a greater level of
uncertainty in the assumptions (further details in the NHS Study Guide: Introduction
to Medical Statistics).
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Figure 1. The height of 3,607 adult women recorded in the Scottish Health Survey,

1998.

(7) Confidence interval for a proportion (percentage).

A narrow confidence interval means your estimate is precise whereas a wide
confidence interval means it is imprecise. A wide confidence interval can occur
because it is based on a small number of observations, or that there is simply a large
degree of variation in the individual data. To calculate a confidence interval (ClI) for a
proportion you need:

The proportion (or percentage) itself

The number of observations

The standard error of the proportion (or percentage)

The number of standard errors needed to encompass the interval chosen (e.g.
a 95% ClI needs 1.96 SESs)

For a proportion (P), SE (P) = /(P (1-P)/n) (equation 3)
95% Cl =P + 1.96 x SE (P) (equation 4)
For a percentage (P%), SE (P%) = ./ (P% (100-P%)/n) (equation 5)
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95% Cl = P% + 1.96 x SE (P%) (equation 6)
In the audit of emergency admissions above the percentage of inappropriate referrals
based on 93 observations was 19%. The 95% CI was calculated as:
SE (P%) = /(P% (100-P%)/n) = ,/19(100 — 19)/93 = 4%
The 95% Cl = P% + 1.96 x SE (P%)
the upper Cl = 19 + (1.96 x 4.0) = 27%
the lower CI =19 - (1.96 x 4.0) = 11%

(8) The relationship between Confidence Intervals and P-values from tests of
statistical significance

A confidence interval (Cl) is a range of values in which the true mean for a population
is likely to lie. A narrow Cl means your estimate is precise. A wide Cl means your
estimate is imprecise, due either to it being based on a small number of
observations, or that there is simply a lot of variation in the data.

A P-value is derived from a test of statistical significance as used in testing a
hypothesis. In any experiment comparing, for example, the frequency of observations
in two samples there will always be a difference between them. The question is
whether the observed difference reflects a true difference between the two
populations from which the samples were drawn. Significance tests cannot prove that
an observed result is due to a real effect. It can only assess this in terms of ‘the
probability of occurrence of a result as extreme, or more extreme than that
observed if the null hypothesis were true’. This is the definition of the P-value
(also referred to as the type | error). Effectively, it is the probability of getting the
wrong answer! Selecting a P-value of 0.05 to delineate statistical significance and the
decision to reject the null hypothesis means we are prepared to be wrong 1 chance
in 20 (5%).

The P-value has been likened to the ‘probability that the observed effect is due to
chance’ but this interpretation is frowned upon by some statisticians.

The first stage is to make up the null hypothesis which states that there is no
difference (in whatever you are testing) between the two populations. We then select
a sample from each population which we hope is representative of that population
and set out to disprove the null hypothesis by applying a significance test to the
measurements from each sample. The P-value assesses how likely it would be to
observe such a difference between the two samples when in reality there is no such
difference between the populations from which the samples were drawn. It is
common practice to consider a P-value of less than 0.05 to indicate a statistically
significant result. The smaller the P-value the stronger is the evidence against the
null hypothesis of no difference in the mean value under test between the two
populations. A P-value of 0.001 would encourage you to reject the null hypothesis
and conclude that there is a real difference between the two populations, but you
might be wrong and, in this case, the probability of being wrong is only 0.001 or 1 in
1000.

Authors sometimes write that a significance test revealed a P-value between 0.05
and 0.10 and the test “just failed to reach statistical significance”. This is a poor
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phrase frowned upon by statisticians. What this actually means is that there is no
difference in the mean values of whatever is under test between the groups, or, more
likely, that there were too few participants to demonstrate a difference between the
groups if one truly exists (Figure 2).

s E Wy -

20 I "

Reran Ho; | Reseet Ho:

Figure 2. A hypothesis test and statistical considerations comparing two distributions.

Ho= null hypothesis of no difference in the means between the two populations

Ha= alternative hypothesis in favour of a difference between the two populations

i and p” are the mean values for each population

20 refers to 2 standard deviations.

a = 0.05 is the P-value associated with the decision to reject the null hypothesis in
favour of the alternative hypothesis (also referred to as the type | error).

B is the type Il error and 1- B is the power of the study to detect a difference if one
truly exists.

The further apart the distributions are the greater is the difference between the mean
values of the two samples, and the greater the likelihood that the difference
measured reflects a true difference in mean values of the populations from which
each sample was drawn.

L
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Example: Mortality in patients with heart failure

A randomised controlled trial was undertaken to compare the mortality experience of
two drugs (A and B) being used to treat patients with heart failure.

Of those patients on drug A, 33% died.

Of those patients on drug B, 38% died.

The difference = 5%. The statistical test comparing proportions gave a P-value of
0.07 (not statistically significant by convention).

The 95% confidence interval of the difference in mortality was -1% to +12%.

This 95% interval includes the value zero so is not significantly different from zero at
the 5% level (P=0.07).

But, in interpreting the confidence interval we are 95% confident that the true
difference in mortality between drugs A & B is between:

-1% (A worse than B), or +12% (A better than B)

Interpretation: Drug A is likely to be better than Drug B for reducing mortality in
patients with heart failure but the evidence underpinning the inference is weak.

Should we cite P-values or confidence intervals? A P-value will tell you whether or
not there is a statistically significant difference between two populations. The
confidence interval will provide information about the size of the difference and the
strength of the evidence. Confidence intervals provide more information than a P-
value alone and both should be cited.

The relationship between P-values and confidence intervals is visually represented in
Figure 3.

Statistical inference and extrapolation of results from a sample to a population
assumes that the sample is representative of the population from which it is drawn.
When this is not the case the conclusions will lack validity and be unreliable.
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Figure 3. The relationship between P-values and the 95% confidence intervals.

The zero line along the horizontal axis represents ‘no difference’ between the samples.
A P-value greater than 0.05 (5%) (e.g. 0.8 as above) will be associated with a 95%
confidence interval that staggers the zero line. This implies the null hypothesis cannot
be rejected suggesting there is no difference in the populations from which the samples
were drawn. A P-value of exactly 0.05 (5%) will be associated with a 95% confidence
interval that starts from zero. A P-value less than 0.05 will be associated with a 95%
confidence interval that does not include zero, hence we can reject the null hypothesis
in favour of an alternative suggesting that the two populations from which the samples
were drawn are significantly different from one another in the characteristic under
investigation. In simple terms the smaller the P-value the further away from zero will be
one end of the confidence interval. However, we may be wrong in rejecting the null
hypothesis. The reality may be that the two populations do not differ but our samples
suggest they do. The P-value represents the probability of making the wrong decision.

(9) Tests of Statistical Significance: the T-test

The t-test is a parametric test, that is, one applied to data that are Normally
distributed with a bell-shape (see Figure 1 above for an example of a Normally
distributed variable). The assumptions underlying use of the t-test are:

the data come from a Normal (Gaussian) distribution

the samples are not too small

the samples do not contain outliers (particularly a problem for small samples)
For comparison of 2 samples, that:
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¢ the samples are of equal or nearly equal size
¢ the variances are equal or approximately so (but this is not critical).

When comparing two groups the shape of the two distributions should be similar (see
Figure 2). If the shapes vary markedly in that one distribution is ‘wider and less
‘peaked’ than the other the analysis may be unsound. However, there is a
modification to the calculations that allow for the difference in shape of the
distributions and statistical packages will make this adjustment. In general, the t-test
is robust against small deviations from these assumptions.

There are 3 different t-tests available depending on the data being analysed.
(9.1) The One-Sample t-Test

This test is applied to a single distribution. The null hypothesis states that the mean
of the sample does not differ significantly from some hypothesized mean. In effect it
compares a sample mean with what you think the true mean should be.

Example: haemoglobin concentration at referral in women with colorectal
cancer.

The haematology results were reviewed from 58 women who were subsequently
diagnosed with colorectal cancer to see if they had evidence of anaemia on
presentation.

The expected reference value for haemoglobin (Hb) in women = 13.6 g/dl.
Mean Hb on presentation =12.0, SD 1.9 g/dl

Mean difference between the women’s Hb and 13.6 (the reference value) = -1.6 g/dl
The 95%CI of the difference = —2.1to -1.1, P<0.001
95% Cl

| -2.5 | -2.0 |-1.5 |-1.0 | -0.5 )

Note: this 95% confidence interval does not include the value zero so it is
significantly different from zero at the 5% level, in this case <0.001.

Interpretation: we are 95% confident that the true mean Hb at presentation in
women with colorectal cancer is between -2.1 and -1.1 g/dl less than the reference
value of 13.6 g/dl.

(9.2) The Two-Sample, Unrelated, Independent Groups t-Test

The test, also called the unmatched t-test, is used to compare two unrelated
(independent) samples. The null hypothesis states that the means of the populations
from which the samples are drawn do not differ significantly from one another.

Example: haemoglobin concentration at referral in women with colorectal
cancer.

This time the results were reviewed from 58 women diagnosed with colorectal cancer
to see if those with right-sided disease of the colon had a different degree of anaemia
on presentation compared with those with left-sided disease of the colon.

These women represent two independent samples
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Mean Hb on presentation (n=58) =12.0, SD 1.9 g/dI
Mean Hb on presentation (n=36 with Left-sided disease) =12.9, SD 1.5 g/dI
Mean Hb on presentation (n=22 with Right-sided disease) =10.7, SD 1.6 g/dI

The difference in the means of the two groups = -2.2 g/dI
The 95%CI of the difference = — 3.0 to -1.4, P<0.001
95%Cl

30 |25 |-20 |-1.5 |-10 |-05 |0

Interpretation: we are 95% confident that the true mean Hb in women with right-
sided disease is between -3.0 and -1.4 g/dl less than those women with left-sided
disease.

(9.3) The Related, Paired Samples t-Test

This test is similar to the one-sample t-test. It involves one group of subjects where
each participant has two measurements that are paired (e.g. before and after a drug,
a follow-up study, a cross-over design where each participant gets both treatments in
turn, or a case-control design where a participant is matched with a single control).
The null hypothesis is that the mean difference in the pairs is zero.

Example: change in disease activity in ulcerative colitis over 3 months

59 patients with ulcerative colitis (UC) were examined and their disease activity
assessed. They were re-examined 3 months later to determine the change, if any, in
disease activity.

Mean baseline score = 5.9, SD 4.3
Mean follow-up score = 5.6, SD 3.9
Mean difference in paired scores = —0.3 (SD 2.7)

95% Cl=-1.0to + 0.4, P=0.4
95% CI

10 |-05 | 0 | +05| +1.0]

This result was not significant (P=0.4) and the 95% confidence interval includes the
value zero, so we cannot reject the null hypothesis of no change in disease activity.

Could we have compared the baseline and follow-up results with the two-sample t-
test? No, because the two samples are related and not independent. In any case the
baseline mean of 5.9 and SD of 4.3 suggests that the data are not Normally
distributed, which violates one of the assumptions for using the t-test. The clue here
is that, because disease activity can only take a positive value the mean (5.9) minus
twice the SD results in a negative value (-2.7). Remember, the mean +/- twice the SD
encompasses 95% of the observations in a set of data that are Normally distributed
(see Figure 1). The same problem of a negative value for disease activity holds true
for the follow-up score. The mean and SD of the differences in disease activity was
-0.3 and 2.7 so it is not possible from these numbers to assess if the distribution of
the differences did conform to a Normal distribution. Use of the paired t-test assumes
the differences are Normally distributed and, thankfully, this was the case (Figure 4).
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Figure 4. The distribution of the baseline,
follow-up and difference in scores for
disease activity in 59 patients with
ulcerative colitis. The distributions of the
baseline and follow-up scores are
skewed but the distribution of the

S, Dov 274 difference in the baseline and follow-up

Mean = -3 scores conforms more to a Normal
0l N =509.00 distribution, hence use of the t-test is
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justified.

DIFFERENCE DISEASE ACTIVITY

(9.4) Consequences of using the t-test when the assumptions are not met

A study was undertaken comparing the average blood loss associated with a
particular operation performed using two techniques. Technique 1 (the usual
procedure) was performed on 274 patients with a mean blood loss of 640 ml and an
SD of 589 ml. Technique 2 (a new procedure) was performed by the same surgeons
on 45 patients with a mean blood loss of 789 ml and an SD of 444 ml. The
researchers used a two-sample t-test to compare the data yielding a P-value of 0.108
suggesting the null hypothesis of no difference in the mean level of blood loss
between the two techniques could not be rejected. However, use of the t-test (a
parametric test) assumes the data are Normally distributed and the researchers had
not checked the distribution of the data beforehand. However, just ‘eyeballing’ the
summary statistics suggests the data are not Normally distributed as, for each
technique, the mean value minus twice the SD yields a negative value for blood loss,
which is implausible! This was confirmed when the data were plotted as a histogram
(Figure 5).
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Figure 5. Distributions of blood loss associated with two surgical techniques

When data are not Normally distributed the mean is less reliable as a measure of
‘central tendency’ when the correct statistic is the median (See Study Guide 10, An
Introduction to Medical Statistics). Because the data are not Normally distributed the
researchers should have used a non-parametric test which, effectively, compares the
medians (the t-test compares the mean values). One such test is the Mann-Whitney
U test (See Study Guide 12 How to Choose a Statistical Test). The summary
statistics and results of the statistical tests are shown in Table 5.

Table 5. Consequences of using the wrong test when comparing two groups

Blood Loss (ml): | Technique 1 | Technique 2 Statistical Test

n 274 45 Parametric | Non-parametric
test test

Mean 640 789

Median 500 700 t-test Mann-Whitney

SD >89 444 P=0.108 P=0.002

Minimum 100 250

Maximum 7500 2500

25t Percentile 400 500

75" Percentile 750 1000

The correct analysis, using the non-parametric test now revealed that, overall, blood
loss was significantly greater using technique 2 (P=0.002).

(10) Tests of Statistical Significance: the Chi-Square Test to Compare
Proportions

The chi-square test is a common test to compare proportions (frequencies) in 2 or
more groups. Consider the research question: In women eligible for breast screening
does a personalised letter from the GP improve uptake? A randomised controlled trial
was undertaken in one practice where women eligible for breast screening were
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randomised into two groups. One group (the intervention) received a letter from their
GP encouraging them to attend the breast screening invitation. The other group did
not receive the letter (control). The null hypothesis is: ‘in women eligible for breast
screening there is no difference in uptake to an invitation to attend mammography
from use of a personalised letter from the patient’'s GP’.

Of 470 women invited for breast screening 254 (54%) attended. The attendance
rates were 51.3% in the control group and 56.8% in the intervention group. Is this
difference in proportions statistically significant? The results are summarised in Table
6 which is referred to as a 2 x 2 contingency table.

Table 6. A randomised controlled trial comparing the effects of a personal
letter from a GP on the uptake of an invitation to breast screening.

Attended for +Letter - Letter Totals
Mammography: (Intervention) (Control)
Yes 134 120 254
No 102 114 216
Totals 236 234 470

In each of the four shaded cells we calculate the number of women expected to
attend if the letter had no effect on their decision. Overall, 254/470 women attended
(54%). The expected number is calculated for each cell as:

Column total x Row total / Overall total (equation 7)

For the upper left cell this becomes: 236 x 254 / 470 = 127.5 and the expected values
for the other cells are:

Lower left =236 x216/470=108.5

Upper right =234 x254/470=126.5

Lower right =234 x216/470=107.5

The chi-square statistic, referred to as x?, is calculated as:

= Y (observed - expected)? / expected (from the 4 cells) (equation 8)

The symbol Y refers to ‘sum of’, in this case the sum of the equation for the 4 cells.

In this example, x> = 1.42, and P=0.23 (from the stats tables), so a non-significant
result. The 95% confidence interval for the difference in proportions is -3.5% (GP
letter reduced uptake) to +14.5% (GP letter increased uptake).

Interpretation: In this trial there is no evidence that a personalised letter from the
GP would improve the uptake of breast screening among the population of women
from which the sample was drawn.

But, a lack of evidence of an effect is not the same as evidence of no effect and
the 95% confidence interval suggests the letter is more likely to improve uptake than
reduce it. The options at this stage include planning a larger study with a power
calculation to determine the sample size needed whereby a difference in uptake of
about 5% would be statistically significant at P=0.05 or less, assuming the null
hypothesis can be rejected to reflect a true, positive effect from the letter.
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(11) ‘Negative’ studies

Occasionally a trial comparing a drug with a placebo is described as being ‘negative’
(P>0.05) implying that the drug is no better than placebo. The drug comparison study
above in patients with heart failure had a P-value of 0.07 and may have been
described as a negative trial implying the two drugs were equivalent. However, you
should be wary of trials described as ‘negative’ as lack of evidence of an effect is
not the same as evidence of no effect. For example, a study was undertaken on
the relationship between overuse of mobile ‘phones and the development of brain
cancer. The results failed to show an association. But, the fact that you do not have
evidence to show mobile ‘phones are harmful is not the same as stating they are
safe. (See the article by DG Altman and JM Bland. Absence of evidence is not
evidence of absence. BMJ 1995; 311: 485)

(12) Statistical Versus Clinical Significance

It is very important to distinguish between statistical significance and clinical
significance. Be wary of results of very large studies where small changes in clinical
outcomes may be reported as highly significant but have little meaning clinically.

(13) Interpretation of Results from a Drug Trial

Consider the question: Is aspirin effective in reducing the incidence of heart attacks?
A randomised controlled trial was undertaken in 22,071 men randomised into one of
two groups. One group took one aspirin tablet a day, the other group took one
placebo tablet a day. The outcome was the number of heart attacks over 1 year. This
involved a comparison of proportions and the data are summarised in Table 7.

Table 7. Results from a randomised controlled trial comparing daily aspirin and
placebo in the incidence of heart attack

Group: Heart No Heart n Attack rate
attack attack

Placebo 239 10,795 11,034 239/11,034 = 0.0217

Aspirin 139 10,898 11,037 139/11,037 = 0.0126

Can we reject the null hypothesis that the attack rate is the same in both groups?
Attack rate in placebo group (p1) = 0.0217,
Attack rate in aspirin group (p2) = 0.0126,
Difference in attack rates (p1- p2) = 0.0091, P<0.00001
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The significance test: this part can be omitted

z = (p1- p2) / SE (p1- p2)

SE (p2- p2) =V [ (p(1-p2)/ina) + (p2(1-p2)inz )]

SE (p1- p2) =V [(0.0217 (1- 0.0217) /11,034 ) + (0.0127 (1-0.0127) /11,037 )]

=0.001749
z=0.0091/0.001749 = 5.20, P<0.00001

The 95% CI = p1- p2 = t (0.05) X SE (p1- p2)

=0.0091 £ 1.96 x 0.001749 = 0.0091 + 0.0034 = 0.0057 , 0.0125

The P-value is <0.00001 so a highly significant result with a less than 1 in 100,000
chance that we would be wrong in rejecting the null hypothesis of no effect of aspirin.

The 95% confidence interval for the difference in proportions is: 0.0057, 0.0125 so
we are 95% confident that the true difference in attack rate lies between 0.0057 and
0.0125.

We can extract other useful statistics from this comparison of proportions. For
example, the difference in proportions (pi- p2 = 0.0091) and its confidence interval is
small, but consider the relative risk which is: 0.0217/0.0126 =1.72

Interpretation: members of the placebo group were 1.72 times more likely to
have a heart attack than members of the aspirin group.

The relative risk reduction (RRR) is the proportional reduction in rates of adverse
events between an experimental and control group.

EER = experimental event rate, CER = control event rate

RRR = |EER-CER| / CER =]0.0126 - 0.0217| / 0.0217 = 0.0091 / 0.0217 = 0.419 or
42%

Note: the |’ lines before and after the term EER-CER indicates that we must ignore
the sign of the difference

Interpretation: members of the aspirin group showed a 42% reduction in
adverse outcome compared with the placebo group.

The absolute risk reduction (ARR) is the absolute (arithmetic) difference in rates of
adverse events between the experimental and control group.

ARR = |EER-CER]| = 0.0091 or 0.9%

This value is used to calculate the number needed to treat (NNT) which is the
number of patients who need to be treated to achieve one additional favourable
outcome. The NNT is calculated as the reciprocal of the ARR.

NNT =1/ARR =1/0.0091 = 110 patients.

Interpretation: we need to give 110 patients aspirin for a year to prevent one
heart attack.

In a similar way a study could focus on drug side effects and the results be used to
determine the numbers needed to harm (NNH). In fact, for aspirin the NNH is about
400 so that for every 400 patients treated with aspirin for a year we would expect one
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patient to suffer an adverse effect (? Gastrointestinal bleed or whatever) but to
prevent a heart attack in about 4 patients.

The NNT and NNH values are useful statistics to be taken into account with costs
when recommending treatments and when communicating with patients on the risks
and benefits of a particular medication.

Example (from the introduction):

In the 1990s a survey was undertaken of NHS Board members who held
responsibility for commissioning services. A questionnaire was sent with details of 4
rehabilitation programmes. Respondents were told that each programme cost about
the same. They were asked to review the information presented on the outcome of
each programme and select the best one suitable for funding. The 4 programmes
with their associated outcomes were:

Prog 1 — with an absolute reduction in deaths of 3%
Prog 2 — with an increased survival from 84% to 87%
Prog 3 — with reduced death rates by 19%

Prog 4 — 33 patients needed to avoid 1 death

The information presented gave different criteria on outcomes but, in reality, the
programmes were identical. 140 board members responded but only 3 identified the
summary statistics were from the same programme. The authors concluded that, in
this sample, those charged with commissioning services lacked the necessary skills
to make informed decisions.
The rationale:

Death rate rehab = 13% (survival 87%)

Death rate control = 16% (survival 84%)

Reduction in death rate = 3%

Proportional reduction in deaths = 3% / 16% = 19%

NNT =1/0.03 (or 100/ 3) =33

See: Fahey et al BMJ 1995; 311: 1056-1059.

(14) How to Make Sense of Data Presented in Graphs
(14.1) Assessing the appropriateness of the scales

Data presented in graphical form can sometimes mislead. For example, a paper was
published in which the authors claimed that infant mortality for a country had fallen
markedly between 1970 and 1994. They presented a graph (Figure 6) which showed
a downward trend. When presented with such a graph your eye is first drawn to the
information in the middle, i.e. the declining slope. But you should also look at the
scales. The horizontal axis (Year) is appropriate but the vertical axis (IMR, Infant
mortality rate) is scaled from 23 to 26 deaths / 1000. Hence, this does represent a
decline but the magnitude of that decline is only 2 deaths / 1000 over the 24 years,
hardly a ‘marked’ fall. This is further seen if the data are re-plotted with zero on the
vertical axis (Figure 7).
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Figure 6. Infant Mortality Rate (deaths / 1000 live births)
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Figure 7. Infant Mortality Rate (deaths / 1000 live births) re-plotted with
zero on the vertical axis.

Consider the data plotted in Figure 8 which shows the relationship between % body
fat and biceps skin fold thickness in adult males. The biceps thickness is plotted on a
linear scale, i.e. equal increments from 0 to 30 mm. However, the correlation with %
body fat is not linear but suggestive of a curvilinear relationship. Furthermore, the
spread of values for the biceps skin fold on the vertical axis increases with increasing
% body fat. This variation in spread of values is referred to as being heteroscedastic
and suggests a proportional relationship between the spread (variance) of skin fold
thickness and % body fat. The analysis of data in this form can be a challenge.
However, we can improve the situation. The biceps skin fold data is skewed in
distribution (not bell-shaped) and transforming the data by taking logarithms (see
Glossary) results in a distribution that fits better with the Normal, bell-shaped
distribution (Figure 9). Now the relationship between % body fat and the log of the
biceps skin fold does appear linear and the spread of the biceps data is
approximately equal whatever the value of % body fat, a pattern described as
homoscedastic (Figure 10). Compare the pattern of the data as plotted in Figures 8
and 10. The analysis of data as displayed in Figure 10 is more straightforward. The
message, again, is to look at the graph’s horizontal and vertical scales to know what
you have been presented with. Compare the vertical axes in Figures 8 (linear) and 10
(logarithmic). Note the difference in the size of the gap between adjacent marks.
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Incidentally, it is possible to transform data from a skewed distribution into a Normal
distribution using other mathematical functions such as the reciprocal (1/x), or by
taking an exponent (x?, x3).
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Figure 8. Relationship between %body fat and biceps skin fold thickness (mm)
in adult males
(linear vertical scale)
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Figure 9. The distribution of the biceps skin fold (upper panel) and after
transforming by taking logarithms (lower panel).

L
Copyright NHS Fife, Research & Development Office, Dr David Chinn, v5, 9" November 2020. Page 23



NHS Fife Research Study Guide: [13] How to Make Sense of Numbers.

30

20 A o

Biceps skinfold (mm)

0 10 20 30 40
% body fat

Figure 10. Relationship between %body fat and biceps skin fold thickness (mm)
in adult males
(logarithmic vertical scale)
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(14.2) Checking for outliers

Check each graph for the presence of outliers (Figure 11). Is it clear how they have
been dealt with in the analysis? The presence of one or more outliers can have a
marked effect in the analysis on, for example, estimates of regression slopes and
correlation coefficients obtained.
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Figure 11. Relationship between Weight (kg) and Body Mass Index (BMI, kg/m?)
in adult males. Note the two outliers.

(14.3) Line graphs, scatterplots, histograms and bar charts

Data can be visually presented in other forms, for example as line graphs and bar
charts. Here is an example of some research that used a variety of charts for
representing the results.

In the 1990s a National Service Framework on diabetes was released which stated
that GPs should actively seek to identify patients with diabetes. An audit was
undertaken by the Public Health department in one area asking each practice to
provide data on the number of their patients registered with diabetes. However,
because, at that time the uptake of computerisation was known to be patchy amongst
the practices it remained uncertain just how reliable the data would be.

A data collection scheme was set up to study the local prevalence of diabetes and to
identify those practices which had evidence of poor-quality record keeping. Data
were collected from five large sentinel practices which had good evidence of high-
guality electronic record keeping and use of their clinical software. These five
practices represented about 12% of the resident population. The data were pooled
and the prevalence of diabetes was calculated for each 5-year age group, by gender
and plotted in a line graph (Figure 12). These rates were then applied to the age-sex
registers of each practice in that area to provide estimates of the expected number of
patients with diabetes. This number was then compared in a scatterplot with the
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actual number of patients each practice had returned (Figure 13). Most practices laid
along the ‘line of identity’ where the number of patients recorded was close to the
number expected. However, some practices were lying well away from the line of
identity.

The difference between the number recorded and that expected for each practice
was plotted as a histogram (Figure 14). A few practices had very many more patients
than expected whilst others had markedly fewer patients than expected. Remember,
these figures were adjusted for age and gender but not for any other features known
to influence the prevalence of diabetes (e.g. South Asian ethnicity).

males

----- females

Figure 12. The prevalence of diabetes by age and gender.
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Figure 13. The number of registered patients with diabetes compared with that
expected for each practice.
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Figure 14. The difference between the number of registered patients with diabetes
from that expected for each practice.

Another way of graphing the data was to plot the standardised morbidity ratio (SMR)
for each practice, that is, the number of patients with diabetes registered divided by
the number expected, multiplied by 100. This is a notional rate where a value of 100
indicates the practice had registered the exact number expected. The practices were
then sorted in order from lowest to highest SMR values and a bar chart generated
where each bar represented a practice (Figure 15).

300
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100

Standardised Morbidity Ratio

o

Practice number

Figure 15. The standardised morbidity ratio for each practice. A value of 100
indicates the number of patients registered is equal to the number expected based
on that practice’s age-sex register.

At one end of the scale a practice had hardly any patients with diabetes recorded on
its computer (SMR much less than 100). At the other end of the scale a practice had
an SMR of about 260, or 2-3 times the number expected. What could be the reasons
for this variation? How should we interpret these findings?

In these circumstances it is appropriate to first look for technical reasons. In the low
recording practices is there evidence of under-recording, or the wrong codes being
used for recording diabetes. The practices may not be using their clinical systems to
best effect. Are these, perhaps, single-handed practices?
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In the higher recording practices is there evidence of over-recording, perhaps with
patients recorded with diabetes when there was only a suspicion of the condition, or
a family history of it recorded? Again, are the correct codes being used?

In interpreting the SMR the assumption is that practices in the middle with values
around 100 are ‘doing it right’. The data are adjusted for age and gender. However, it
may be that the high recording practices have a different ethnic mix of patients. They
may, for example, have a disproportionate number of South Asians who are known to
be at higher risk of developing diabetes.

However, there is another reason. The estimates from this study suggested a
prevalence of diabetes of 1.9% in males and 1.6% in females (all ages). At this time,
it was accepted that diabetes was under-recognised and it may be that the practice
with an SMR of about 260 had an active screening programme in place to check for
diabetes (and pre-diabetes). Hence, their results may reflect the true prevalence of
diabetes in the community and all the other practices had got it wrong!

The results of these exercises seldom provide clear cut answers but are useful in
identifying the need for further investigations, including individual practice visits to
explore differences in results and possible lessons to be learned.

(15) How to Make Sense of the Linear Correlation Coefficient

The relationship between two variables can be visualised in a plot of one variable
against the other (see Figures 6, 7, 8, 10, 11 as examples). The strength of linear
relationships, where the data plotted in a scattergram appears to fit around a straight
line, can be quantified as the Pearson correlation coefficient (r) which is
dimensionless (no units) and takes the value from — 1 to +1. A negative correlation
implies that one variable decreases as the other one increases. A positive correlation
implies that both variables increase together. A correlation coefficient of +1 occurs
when both variables are perfectly correlated positively. A correlation coefficient of —1
occurs when both variables are perfectly correlated negatively. Some examples are
given in Figure 16.
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Figure 16. Examples of typical correlations and the associated correlation coefficient (r)

The Pearson correlation coefficient should not be used:

if the relationship is non-linear

in the presence of outliers

when the variables are measured over more than one distinct group
when one of the variables is fixed in advance

for assessing agreement

Examples of the inappropriate use of the correlation coefficient are given in Figure

17.
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r = 0.9, non-linear (curvilinear) relationship r = 0, non-linear relationship
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Figure 17. Inappropriate use of the correlation coefficient

The Pearson correlation coefficient should not be used when assessing agreement,
that is, when trying to decide, for example, how close two sets of measurements are
to one another, or when comparing two observers reading the same radiographs.
Consider a study to compare two instruments that measure the same characteristic.
A series of samples are split and assessed by each instrument. The results are
tabulated and the correlation coefficient calculated (Table 8). The table displays the
results under three circumstances, (1) where the two instruments have the same
calibration which shows perfect consistency and a perfect correlation between them,
(2) where the calibration differs for one instrument which records a value that is
double that for the other instrument, and (3) where one instrument has a zero error,
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that is the instrument does not read zero correctly. For examples (2) and (3) the
consistency is adrift but the two series of values still retain a perfect correlation.

Table 8. The fallibility of relying on the correlation coefficient when assessing

agreement
Sample Result (1) Result (2) Result (3) Result
Instrument 1 Instrument 2 Instrument 2 * Instrument 2 **
1 12 12 24 16
2 16 16 32 20
3 9 9 18 13
4 31 31 62 35
5 17 17 34 21
6 22 22 44 26
7 11 11 22 15
8 20 20 40 24
9 19 19 38 23
10 27 27 54 31
Consistency: Both instruments consistent Instruments not consistent
Correlation +1 +1
coefficient: (perfect correlation) (perfect correlation)
* calibration error ** zero error

The correct method comparison is to use a Bland-Altman plot (formerly called the
Oldham Plot, as published by Peter Oldham, a statistician working at the MRC
Pneumoconiosis unit at Penarth, South Wales in the 1950s). The difference between
the two readings is plotted against the mean of the two readings (Figure 18).

In Figure 18 (a) the two instruments are consistent; the difference between their
readings is zero for each pair of observations and the Bland-Altman plot has a flat
line across the graph crossing the vertical axis at ‘0’.

In Figure 18 (b) the two instruments are not consistent; the difference between their
readings increases with the mean. A value of 15 on instrument 1 coincides with a
value of 30 for instrument 2. The Bland-Altman plot shows a positive association
between the difference and the mean of the paired observations.

In Figure 18 (c) the two instruments are not consistent; the difference between their
readings is consistent (=4, Table 8) but does not increase with the mean. A value of
15 on instrument 1 coincides with a value of 19 for instrument 2. The Bland-Altman
plot shows a flat line across the graph but this time it intersects the vertical axis at a
value of 4 (the zero error).
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(a) Both instruments consistent (r=1)

Corresponding Bland-Altman plot
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Figure 18. Correlation and Bland-Altman plots for the examples in Table 8.
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(16) Method comparison and Repeatability Studies

The data from method comparison studies should be analysed with the Bland-Altman
approach. Similarly, within-person repeatability studies, comparing the results in the
same person but between different times, should also use the technique. An example
is given in Figure 19 from a study in children looking at the repeatability of a new
measurement of bone density at the heel (os calcis). Fifty-three children had their
bone density measured twice on the same day. The difference in repeated measures
was unrelated (that is, not correlated) with the mean. In other words, the scatter of
the differences did not show an association with the mean of the repeated
measurements. In this example, the mean and standard deviation of the difference
between repeated measures was 0.0001 and 0.015 g/cm?; respectively. The 95%
limits of agreement between repeat measures were -0.029 to +0.029 g/cm?.
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Figure 19. Bland-Altman plot of the difference between repeat measures of

bone density at the heel in 53 children.
Reference: Chinn et al. Arch Dis Child 2005; 90: 30-35

For further detail see Bland JM, Altman DG Measuring agreement in method
comparison studies Stat Methods Med Res 1999; 8; 135-160.

(17) How to Make Sense of an Odds Ratio
The ‘odds’ is the ratio of the number of times an event occurs to the number of times

it does not occur from a given number of chances. It is used to quantify the ‘risk’ of
something happening. The ‘odds ratio’ (OR) is a comparison of odds between two
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groups to quantify the ‘relative risk’ of something happening. If the odds are the same
in the two groups the odds ratio is 1.

Consider the road accident statistics from Scotland in 2007 when there were 282
fatalities (Table 9). Suppose we wish to calculate the relative risk of being killed if
involved in a motorcycle accident compared to a car accident.

Table 9. The number of casualties and fatalities on Scotland’s road, 2007.

Casualties Fatalities % deaths
Car 9953 160 1.6
Pedestrian 2682 61 2.3
Motorcycle 1039 40 3.8
Other ?? 21 -
Totals 13,674 ++ 282 -

What are the odds of being fatally injured in an accident when riding a motorcycle
compared with being in a car?

Table 10. The number of fatal and non-fatal casualties in car and motorcycle
accidents, Scotland, 2007.

Fatal Non-fatal Number of

casualties
Motorcycle 40 999 1039
Car 160 9793 9953
Totals 200 10792 10992

For motorcyclists 40 out of 1039 casualties were fatal, which means that 999 were
non-fatal (Table 10). The odds of being fatally injured if a motorcyclist is therefore
40/999.

For car occupants160 out of 9953 casualties were fatal, which means that 9793 were
non-fatal. The odds of being fatally injured if a car occupant is therefore 160/9793.

The ratio of odds = (40/999) / (160/9793) = 2.45 and the 95% Cl =1.72 to 3.48
Interpretation: we are 95% confident that, when involved in a traffic collision a

motorcyclist has a relative risk of being fatally injured that is between 1.7 and 3.4
times greater than that of a car occupant.

Detailed calculations to derive the 95% CI of an OR this part can be omitted
The ratio of odds = (40/999) / (160/9793) = 2.45 and loge (OR) = 0.896

SE (loge (OR)) = V (1/40 + 1/160 + 1/999 + 1/9793) = 0.179869

95%CIl = 0.896 +/- 1.96 x 0.179869 = 0.5435, 1.248

Take antilogs to get the 95%CI which is 1.72 to 3.48

Odds ratios are commonly derived from case control studies. One such study looked
at the relationship between maternal BMI and the risk of stillbirth. Here, a ‘case’ was
a mother who had a stillbirth. She was matched with a woman who had not had a
stillbirth (‘control’). Cases and controls were matched for characteristics known to be
associated with stillbirth, such as parity, age and gestation. Women were grouped
according to their BMI and the odds ratio calculated for the relative risk of a stillbirth
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for women in each BMI category compared to the reference category of 18.5 — 25
kg/m2. An odds ratio of 1 implies no difference in risk between cases and controls.
The results showed that the risk of a stillbirth increased with increasing levels of BMI
(Figure 20).

Interpretation: Where the 95% confidence interval crosses the odds ratio (OR) line
of 1.0 the result is not statistically different at the 5% level (P>0.05). Where the 95%
confidence interval does not cross the OR line of 1.0 the result is significantly
different between cases and controls with P<0.05. This was the case for women with
a BMI between 25 and <30, between 30 and <35, between 35 and <40 and if >=40.
The increasing risk associated with an increasing degree of maternal obesity is good
evidence of a causal relationship between maternal BMI and the risk of stillbirth.

Note: the length of each confidence interval is not equal on either side of the mean
OR (the filled in circle in Figure 20). This is because the calculation of the confidence
intervals involves use of a logarithmic function (see the example calculation of a 95%
Cl for an odds ratio above if you really need to understand this more).
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Figure 20. Odds ratio and 95% confidence interval for risk of stillbirth against
maternal Body Mass Index (BMI)

(18) Run Charts and Control Charts

A run chart shows the change in a variable or outcome over the course of a period of
time. Examples include weekly DNA (‘did not attend’) rates in outpatient clinics,
monthly surgical infection rates in a particular hospital and annual stillbirth rates in a
maternity unit. They are simple plots, involve no statistics and can be created
prospectively as time progresses (Figure 21). A run chart can be created from
historical data and include the average value of the measure in question (Figure 22).
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Figure 21. A simple run chart showing the number of missed appointments at an
outpatient clinic. The chart can be updated simply each week.
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Figure 22. Number of new certifications for blindness due to diabetes in a single
Scottish Health Board, 2000 — 2019. The chart includes the average over the period
(4.1 per year).

Control charts (also called Shewhart charts) are similar to run charts in that they
monitor trends in real time but include a measure of statistical variability and are used
in assessing quality control. They help determine when a process can be considered
‘out of control’, particularly early so that special measures can be introduced to
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prevent further deterioration in the process. The degree of variability can be
separated into ‘common cause’ and ‘special cause’ variation. Common cause
variation is attributed to the usual, natural changes expected in a process whereas
special cause variation suggests the process is out of control, having been influenced
by some unusual activity. Examples include hospital acquired infections, patient
satisfaction surveys, falls surveillance, hospital mortality rates etc.

Control charts include upper and lower limits describing the statistical variation to be
expected (typically, as 2 or 3 standard deviation limits). Rules are needed to define
the circumstances when the process is considered out of control. Use of 2 standard
deviations as a limit to define ‘out of control’ may result in too many false alerts,
whereas use of 3 standard deviations may be over-cautious and miss important
events.

There are 7 different versions of control charts depending on the type of data
(attribute or continuous). Attribute data refer to discrete, countable events such as
the number of surgical complications, the number of prescription errors etc.
Continuous data relate to non-discrete measures such as waiting times, length of
hospital stay etc.
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Example: Each month staff on a medical ward monitored the number of falls and
created a control chart of this number as a fraction of bed occupancy using the
number of patient-days. The chart was reviewed each month to identify ‘special
cause variation’.

Month Patient-days N of falls Fraction (= falls per patient-day)
1 1048 1 1/1048 = 0.000954

2 896 4 4/896 = 0.004464

3 918 3 3/918 = 0.003268

4 995 4 4/995 = 0.004020 .....etc

Control Chart: N.falls
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Figure 23. Number of falls as a fraction of the number of patient-days on a ward over
13 months. The solid horizontal line represents the average fraction. The upper
dotted line represents 3 standard deviations (sigma level=3). All but one point is
within the normal, expected variation (common cause). The fraction for Month 11
exceeded the upper limit and indicated a ‘special cause’. This was picked up early
and changes in practice made in month 12 to reduce the incidence of falls.
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Another example: It is generally recommended that laboratory workers should not
spend more than 2 hours per day engaged in manual, repetitive pipetting. A review of
times spent pipetting was done for a hospital laboratory worker engaged in a process
to screen biological material.

Month Days Days where pipetting Proportion
at work time was =>2 hours
Jan 5 0 0/5=0
Feb 20 7 7/20 =0.35
Mar 23 5 5/23 =0.22
Apr 19 8 8/19 =0.42
May 24 8 8/24=0.33 ... efc

Control Chart: Number of days pipetted for 2 hrs or more
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Figure 24. Number of days a laboratory worker was engaged in manual pipetting for
more than the recommended 2 hours a day as a proportion of the number of days
worked each month, January 1999 to February 2000. The solid horizontal line
represents the average proportion. The upper dotted line represents 2 standard
deviations (sigma level=2). In February 2000 the laboratory worker experienced wrist
pain associated with excessive manual pipetting that occurred because two
colleagues who shared the work were on sick leave (special cause). The analysis
confirmed that the proportion actually exceeded 3 standard deviations (rule
violations).
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(19) Funnel Plots

Funnel plots are used to identify publication bias in meta-analyses undertaken as
part of a systematic review where the outcomes from multiple, randomised controlled
trials are combined in a single assessment of an intervention. Publication bias (more
correctly non-reporting bias) represents a threat to the interpretation of an analysis
when it identifies a failure of publication of papers that, in general, have shown a
smaller effect or a negative effect of the intervention under investigation. The effect
size of each study is plotted as an odds ratio on the horizontal axis against a
measure reflecting that study’s sample size or precision (standard error), on the
vertical axis. The plot will resemble a funnel in the absence of publication bias. A
distorted funnel is evidence that important studies are missing (non-reporting bias). A
dependence on published papers that show only a positive effect will overestimate
the overall impact of the intervention under review (see “Funnel Plots as used in
meta-analyses” in Further Reading below for more detail of their use in systematic
reviews).

Funnel plots are also used to compare performance between health care providers
seeking to identify outliers in an outcome of interest. For example, in 2012 the annual
report on maternity outcomes amongst Scottish Health Boards identified NHS Fife as
an outlier in the statistics on stillbirths. A funnel plot was created showing the
average rate of stillbirth for each Health Board over a 5-year period plotted against
the average number of births over the same period (Figure 25).
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Figure 25. Average Stillbirth Rate (stillbirths/1000 births), 2008 — 2012, by NHS
Health Board in Scotland. NHS Fife was an outlier compared to the other Boards,

lying more than 2 standard deviations above the Scottish average.
Source: Scottish Perinatal and Infant Mortality and Morbidity Report, 2012. Healthcare Improvement
Scotland, published March 2014.

The average stillbirth rate across Scotland is about 5 / 1000 births, or about 1 in 200
births. The number of births varies considerably between Boards and, as expected, is

Copyright NHS Fife, Research & Development Office, Dr David Chinn, v5, 9" November 2020. Page 40



NHS Fife Research Study Guide: [13] How to Make Sense of Numbers.

larger in Boards with larger populations. These Boards would also expect to have a
larger number of stillbirths but the rate of stillbirths should be similar to the average
expected. However, the variability, as reflected in the standard deviation, will vary
with the number of births, being relatively greater when the number of births is low.
Hence, the lines delineating 2 and 3 standard deviations in Figure 25 are curved, or
‘funnelled’. For example, compare the high variability (wider ‘funnel’) of Orkney and
Shetland (where the average number of births is low) with the lower variability
(narrower ‘funnel’) of Lothian and Greater Glasgow & Clyde (where the average
number of births is much higher).

Stillbirth rates in Health Boards vary year to year. The average rate, 2008 — 2012,
across the whole of Scotland was 5.08 stillbirths / 1000 births. The highest average
rates were for Orkney, Fife and Borders, all above 6 /1000 births (Table 11, Figure
26). The simple bar chart of average rates in Figure 26 identifies these Boards as
having excessive mortality. However, stillbirths are, fortunately, rare events and rates
based on small numbers can be misleading (see section 3 above). The funnel plot
allows a comparison of Boards taking into account the difference in variability arising
from a difference in the average number of births between Boards. Hence, Orkney
and Borders were not statistical outliers though Fife was, due mainly to particular
high rates in 2008 and 2010 (Table 11).

Table 11. The Stillbirth Rate, 2008 — 2010, by NHS Health Board.

NHS Board 2008 2009 | 2010 | 2011 2012 Average
Scotland 5.4 5.3 4.9 5.1 4.7 5.08
Ayrshire & Arran 4.3 4.6 5.2 4.4 5.9 4.88
Borders 7.0 7.7 6.0 5.4 5.2 6.26
Dumfries & Galloway 4.9 5.3 5.5 0.7 3.6 4.00
Fife 6.9 5.5 8.3 5.6 5.9 6.44
Forth Valley 5.2 3.3 4.8 5.0 4.0 4.46
Grampian 4.9 4.5 4.0 4.1 5.1 4.52
Greater Glasgow &

Clyde 5.6 5.4 5.0 6.6 4.5 5.42
Highland 4.2 7.2 3.7 4.8 6.3 5.24
Lanarkshire 5.2 6.6 5.6 4.4 3.9 5.14
Lothian 4.8 4.8 4.9 4.6 5.1 4.84
Orkney 13.8 10.0 0 0 9.9 6.74
Shetland 0 14.1 0 12.2 0 5.26
Tayside 7.4 5.2 3.0 5.2 2.6 4.68
Western Isles 0 0 0 0 0 0
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Figure 26. Bar chart of the average stillbirth rate (stillbirths/1000 births) by Health
Board, Scotland, 2008 — 2012.

(20) Common Pitfalls in Published Statistics

Generally, it is safe to assume that a paper that includes a statistician amongst the
authors will be robust in its study design, analysis of the data and interpretation of the
findings. When this is not the case you should carefully read the methods and results
sections to look for common mistakes. For example,

(a) Is there a power analysis to justify the choice of the sample size?
(b) Have the authors made a statement about the treatment of missing data or

outliers?

(c) Have the authors checked the distribution of the data and used appropriate

tests of significance? Parametric tests such as the t-test are used for data that
are Normally distributed (bell-shape). Non-parametric tests such as the Mann
Whitney test are used for data that are not bell-shaped in distribution (some
details of this and other non-parametric tests are in the NHS Fife Study Guide
How to choose a statistical test). If using a t-test do the data meet all the
assumptions? (see section 9, page 12 above)

(d) If the data require a paired analysis (e.g. a before and after study) has the

appropriate t-test been used? Remember, use of a paired analysis tests the
hypothesis that the mean change does not differ from zero. Although the initial
and final values may not be Normally distributed it is often the case that the
change is Normally distributed and use of a parametric, paired t-test is safe.

(e) Have the authors used a two-tailed or one-tailed test of significance? A two-

tailed test will test for changes in either direction whereas a one-tailed test
only tests for an effect in one direction. Generally, you should use a two-tailed
test and not assume the effect of some intervention will only ever be in one
direction. As an example, a leaflet designed to allay fears in women from
receiving an invitation to have a repeat smear test might actually increase
anxiety! If, however, the effect of an intervention can only be in one direction
then you should use a one-tailed test. For example, in a study of an
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intervention to increase fertility in infertile couples you can only increase
fertility, not reduce it.

() In comparing change over time in two or more groups have the authors
adjusted for any initial differences between groups?

(g) In a randomised controlled trial have the authors used an intention to treat
analysis? This is where the patients’ data are analysed in the groups to which
they were originally assigned.

(h) Have the authors presented confidence intervals along with P-values?

() Have the authors reported correlation coefficients? If so, is use of the linear
correlation coefficient justified? Remember, correlation does not imply
causation so have the authors been circumspect in interpreting statistical
associations between variables?

() Have the authors adjusted for multiple testing using, for example, the
Bonferroni correction (see Glossary)? The more tests / comparisons you run
on a set of data the more likely you are to obtain some spurious findings just
by chance alone.

(k) Have the authors reported subgroup analyses and, if so, are they justified and
appropriately powered?

(21) Summary

Making sense of numbers can be challenging if you lack the necessary confidence.
Whatever work you do as a health professional you will be presented with numerical
information and be expected to understand it. The simple message is to be very
careful when given such data and ‘think beyond the numbers’. Alternative
explanations may exist so be cautious in blindly accepting the authors’ interpretation
and decide for yourself if the numbers justify the conclusions. Remember, no amount
of clever statistics can salvage a badly designed, biased study. Hopefully, this
account will help you develop that confidence needed. Now go back to the
statements made in the introduction (page 2) to see if you have a better grasp of the
content!

(22) Further Reading
A-Z of Medical Statistics. Pereira Maxwell F. 1998, Arnold.

An Introduction to Medical Statistics. 3" ed. Martin Bland, 2000, Oxford Medical
Publications.

Essential Medical Statistics. 2" ed. Betty Kirkwood & Jonathan Sterne, 2003,
Blackwell Scientific Publications.

Essential Statistics for Medical Examinations. 2" ed. Brian Faragher and Chris
Marguerie, 2005, PASTEST

Funnel Plots as used in meta-analyses. See Page MJ, Higgins JPT, Sterne JAC.
Chapter 13: Assessing risk of bias due to missing results in a synthesis. In:
Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA
(editors). Cochrane Handbook for Systematic Reviews of Interventions version
6.0 (updated July 2019). Available from www.training.cochrane.org/handbook.

Interpreting Statistical Findings. A guide for health professional and students. Walker
J, Almond P. 2010. Open University Press.
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Medical Statistics at a Glance. 4" ed. Aviva Petrie & Caroline Sabin, 2019, Blackwell
Publishing.

Practical Statistics for Medical Research. 2" ed. Douglas G Altman, 2011, Chapman
and Hall.

Statistical Questions in Evidence-Based Medicine. Martin Bland & Janet Peacock,
2000, Oxford Medical Publications.

The Art of Statistics. Learning from data. David Spiegelhalter, 2019, Pelican Books.

(23) Glossary

Sources: adapted from A-Z of Medical Statistics. Pereira Maxwell,

and Medical Statistics at a Glance. 3" ed. Aviva Petrie & Caroline Sabin (see Further

reading).
Bonferroni A procedure for adjusting the P-value in a statistical analysis
correction involving multiple significance testing. When testing, for

Chi-squared test

example, 20 different measures between two groups it is likely
that at least one measure will differ statistically at the 5% level
by chance alone and may not represent a true difference
between those groups.

A significance test for comparing two or more proportions from
independent groups. The observed proportion in each group is
compared with the expected proportion based on a null
hypothesis.

Confidence A range of values in which the true mean for a population is

interval, ClI likely to lie. It usually has a proportion assigned to it (for example
95%) to give it an element of precision.

Continuous A numerical variable which can theoretically take any value

variable within a given range (for example, height, weight, blood

Control Chart

Correlation
coefficient
(Pearson’s)

Data cleaning

pressure).

A tool used for quality control in which a measure reflecting a
process is plotted against time with statistical limits imposed on
the chart to identify unusual causes of variation in performance.

A measure of the linear association (a straight line in a scatter
plot) between quantitative or ordinal variables.

The process of trying to find errors in the data set.

Database A systematised collection of data that can be accessed and
manipulated by a stats package such as SPSS.

Degrees of A concept used with statistical tests that refers to the number of

freedom sample values that are free to vary. In a sample, all but one

value is free to vary, and the degrees of freedom is then N-1.
For example, consider a set of four values with the mean of 5
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Effect size

Funnel Plot

Frequency
distribution

Heteroscedasticity

Histogram

Homoscedasticity

Hypothesis

Logarithm

Margin of error

Mean

Median

Meta-analysis

Mode

Non-parametric

and a sum of 20. If you are asked to ‘invent’ the individual four
values then you are only ‘free’ to invent three of them as the
fourth must ensure the sum adds to 20 (note, it can be a
negative number).

A standardised estimate of the treatment effect calculated by
dividing the estimated difference between two groups by the
standard deviation of the measurements (means or proportions).
In the context of power calculations the effect size is the same
as the standardised difference (see below).

A tool to identify publication bias in meta-analyses (where the
effect size of each study is plotted as an odds ratio against a
measure reflecting that study’s sample size or precision) and to
identify statistical outliers when comparing performance between
health care providers.

A display of data values from the lowest to the highest, along
with a count of the number of times each value occurred.

Unequal variances between two or more subgroups

A graphic display of data frequency using rectangular bars with
heights equal to the frequency count.

Equality of variances within two or more subgroups

A statement of the relationship between 2 or more study
variables. See Null Hypothesis

The logarithm of a number is the exponent (power) to which
another fixed value, the base, must be raised to produce that
number. For example, the logarithm of 1000 to base 10 is 3
because 10 to the power of 3 (10 =10 x 10 x 10) is 1000

A term used by pollsters to estimate the error from a survey of
opinions. In this account it is a range of values equivalent to
twice the standard error on either side of the estimated
population mean. It is equivalent to the 95% confidence interval.

The average value or measure of central tendency. The mean is
obtained by dividing the sum of values by the total nhumber of
values.

Middle value when data are ordered. The value that splits the
sample in two equal parts.

A statistical analysis whereby results from individual studies in a
systematic review are combined to produce an overall effect of
interest.

The value that occurs most frequently.

Refers to data and tests of significance which makes no
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Normal (Gaussian)
distribution

Null Hypothesis,
Ho

Outlier

Parameter

Parametric

Power

Power calculation

Protocol

Publication Bias

P-value

Regression
coefficient

Significance level
(P-Value)

assumptions about the distribution of the data. Data that are
skewed in distribution (to the right or left) are described as non-
parametric.

A continuous probability distribution that is bell-shaped and
symmetrical; its parameters are the mean and variance.

The statement that assumes there is no difference between two
populations being compared, or no relationship or association
between two variables in a population. An experiment may be
undertaken to see if Ho can be rejected in favour of an
alternative hypothesis, Ha.

Values in a set of observations which are much higher, or lower,
than the ‘average’ and lie well away from the rest of the data (in
the tail of the distribution).

A measurable characteristic of a population (e.g. average and
standard deviation of blood pressure for a group of individuals).

Refers to data in which the distribution is bell-shaped (Normal or
Gaussian). Statistical tests that rely on data being distributed
this way are called parametric tests.

The probability of rejecting the null hypothesis when it is false.

Refers to a way of calculating the number of subjects needed for
the results of a study to be considered statistically significant.

A full written description of all aspects of a study — the ‘recipe’.

The tendency for journals to preferentially publish papers citing
mainly positive (statistically significant) findings.

See Significance Level

The slope of the line of best fit in a plot between two variables. It
represents the increase in an outcome variable from a unit
increase in the predictor variable. For example, in a plot of total
lung capacity against height in women the regression coefficient
Is 6.60 litres/metre which means that for every increase in one
metre in height the lung capacity increases by 6.60 litres.

In the context of significance tests, the P-value represents the
probability that a given difference (or a difference more extreme)
Is observed in a study sample (between means, proportions etc)
when in reality such a difference does not exist in the population
from which the sample was drawn. In effect it's the probability of
getting a wrong answer by deciding that two populations differ in
some way when in fact they do not. In statistical parlance, it is
the probability of rejecting a null hypothesis of no difference
between two populations when in fact the null hypothesis is true.
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Spreadsheet

Standard
deviation, SD

Standard error (of
the mean), SE

Standard score (z-
score)

Standardised
difference

T-test

Type | error (alpha
error)

Type Il error (beta
error)

Variable

Variance

Z-score

A computer program (e.g. Excel) that allows easy entry and
manipulation of figures, equations and text. It displays multiple
cells that together make up a grid consisting of rows and
columns, each cell containing either text or numeric values or a
formula that defines how the contents of that cell is to be
calculated. Spreadsheets are frequently used for financial
information because of their ability to re-calculate the entire
sheet automatically after a change to a single cell is made.

A measure of variability of data. The standard deviation is the
average of the deviation of individual values from the mean
measured in the same units as the mean.

A measure of precision of the sample mean. Estimates of a
population mean value will vary from sample to sample. The
distribution of these values is called the sampling distribution.
The SE is the ‘standard deviation’ of this distribution.

Refers to how many standard deviations away from the mean a
particular score is located.

A ratio equal to what is considered the clinically important
treatment difference divided by the standard deviation of the
measure in question.

A statistical test used to determine if the means of 2 groups are
significantly different.

The probability of making the wrong choice by rejecting a null
hypothesis when it is true. In other words, a type | error occurs
when it is concluded that a difference between groups is not due
to chance when in fact it is (reject a true null hypothesis).Also
relates to the significance level (P-value).

The probability of making the wrong choice by accepting a null
hypothesis when it is false. In other words, a type Il error occurs
when it is concluded that differences between groups were due
to chance when in fact they were due to the effects of the
independent variable (accept a false null hypothesis).This
probability becomes smaller with increasing sample size.

Any quantity that varies (e.g. blood pressure).

A measure of variability of data equal to the square of the
standard deviation.

A standard score, expressed in terms of standard deviations
from the mean.

Copyright NHS Fife, Research & Development Office, Dr David Chinn, v5, 9" November 2020. Page 47



