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Disclaimer 
I am an epidemiologist, not a statistician. These notes are written from my experience 
of working in the field of medical research for over 40 years. I have sought to give 
what I hope is a clear and simple overview when choosing a statistical test. I do not 
profess to be an expert in statistics and a ‘proper’ statistician reading this guide may 
take issue with some of my explanations. Accordingly, I would encourage the reader 
to refer to one of the many excellent introductory books available on statistics for 
further guidance; some titles are given in the references and further reading. 
 
(1)  Overview and learning outcomes 
 
This guide is directed at those with some basic knowledge of statistics who require a 
better understanding of which statistical test to use under different circumstances. 
This is a very basic account and a detailed description of each test is beyond the 
remit of this guide. We suggest you use this guide to identify the test you require and 
consult one of the many introductory texts on the subject. Alternatively, you could 
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discuss your requirements with a statistician, preferably at the design stage. After 
reading this guide you should be able to: 

 Cite the considerations needed when choosing a statistical test 

 Describe different data types 

 Cite the four common statistical inferences made in studies 

 Be familiar with the properties and uses of common statistical distributions  

 Know which statistical tests to use in which circumstances 

 Be familiar with the limitations of the tests 

Note: Examples on the use and interpretation of some commonly used tests are 
provided in the NHS Fife study guide ‘How to make sense of numbers’. 

Associated NHS Fife study guides: 
10 Introduction to medical statistics 
11 How to calculate sample size and statistical power 
13 How to make sense of numbers 

 
(2)  The purpose of statistics 
 
Statistics is concerned with estimation and describing ‘uncertainty’ by measuring the 
variability within- and between-persons and the source and size of this variability. We 
use descriptive statistics to represent visually and numerically summaries of 
statistical information. Data can be summarised visually in bar charts, pie charts and 
histograms, and numerically as measures of central tendency (mean, median, mode) 
and of dispersion (Variance, Standard Deviation (SD), Standard Error (SE), Inter-
Quartile Range (IQR)). Further details of these terms are covered in the NHS Fife 
study guide ‘An introduction to medical statistics’. 
 
In comparison, we use inferential statistics to make generalisations, or inferences, 
between two or more target populations from which representative samples are 
drawn. Some characteristics are measured in the samples and probability estimates 
made to test hypotheses of, for example, equivalent values (a null hypothesis) using 
a test of statistical significance. The choice of which test to use depends mainly on 
(1) the type of data, (2) the inferences you wish to make and (3) the distribution of the 
data in the target population and in the sample drawn from it. 

 
(3)  Types of data 
 
There are essentially two types of data and measurement scales. 
 
(3.1)  Categorical, also called Qualitative data (all or none) 
 
Categorical data (data in categories) is mutually exclusive (you can only be in one 
category or another) and may be nominal or ordinal in character. Data are described 
as nominal if they cannot be ordered because there is no natural order. Examples 
include marital status, smoking habit, religion, eye colour, nationality and vital status 
(dead or alive).  
 
Data are described as ordinal where there is a ranked order but the magnitude of the 
difference between adjacent categories is not identical. Examples include results 
from a road race. Runners are categorised as first, second, third etc. The winner may 
have run the race in 60 minutes, the person coming second may have taken 62 
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minutes (2 minutes behind), and the person in third place may have taken 75 minutes 
(13 minutes behind the person coming second).  Another example is where patients 
are asked to report pain on a categorical scale of ‘no pain’, ‘a little pain’, ‘a lot of 
pain’, ‘the worst imaginable pain’. We cannot assume the difference between being in 
‘no pain’ and ‘a little pain’ is the same magnitude as the difference between being in 
‘a little pain’ and ‘a lot of pain’. Other examples of ordinal scales are the Borg scale 
(breathless scores) and those often used in patient satisfaction surveys. 

 
(3.2)  Interval, also called Quantitative data  
 
Data are derived from a count, or a standard measurement, and have a frequency 
distribution. The numbers can be discrete or continuous. Discrete data are integers 
(whole numbers) where the magnitude of the difference between adjacent categories 
is identical (unlike ordinal data above). Examples include the number of children in a 
family (0, 1, 2, 3, 4, 5 etc), length of stay (in days), number of asthma attacks in a 
year, number of GP visits in a year, or the number of beds on a hospital ward. The 
difference between 3 and 4 beds (i.e. 1 bed between adjacent categories) is the 
same as the difference between 6 and 7 beds.  
 
Continuous data include measures such as height, body mass (weight), haemoglobin 
level, and age which can take any value within a range. The data are measured in 
standard units, with clear meaning attached to the difference between measures 
whatever the magnitude of the measurement (for example, the difference between a 
body mass of 21-26 kg (i.e. 5kg) is the same size as that for a difference between 65-
70 kg).  
 
There are differences in interpretation, however, between discrete and continuous 
data. We can calculate the average number of children in a family (for example 2.50) 
and the average body mass (for example, 68.9 kg) but the numbers have different 
interpretations. It is possible for a person to have a body mass of exactly 68.9 kg but 
not possible for a family to have 2.5 children! 
 
Another form of data is the ratio which is also measured in standard units but the 
scale has a true zero which represents a total absence of the variable (for example, 
time, length, volume, mass). Age, height, blood volume and body weight are 
examples of ratio variables where it is possible to state, for example, that one person 
is twice as old as another. This is not the case with non-ratio variables. 
 
Continuous variables can be treated to generate ordinal or nominal data. For 
example, age can be reported as a continuous measure, or in age groups (ordinal 
data) or as a dichotomous variable such as ‘young’ versus ‘old’ (nominal data). 
 
(4)  Inferences to be made 
 
The inferences depend on the research question. There are four main types of 
inference: 

(1) The difference in a measurement between two groups. For example, the 
difference between healthy men and women in haemoglobin level 
(continuous data), or the prevalence of depression (categorical data). 

(2) The evaluation of two or more interventions or treatments in a group of 
patients. For example, in menopausal women the evaluation of a drug on 
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diastolic blood pressure (continuous data), or of two methods of diagnosing 
osteoporosis (categorical data). 

(3) The relationship between two variables. For example, in school age boys 
the relationship between lung capacity and body size (continuous data), or 
between school attended and achievement of an academic standard 
(categorical data).  

(4) The trend in a variable of interest. For example, in patients with type I 
diabetes the survival pattern following diagnosis (continuous data), or the 
change in annual incidence of developing blindness (categorical data). 

 
(5)  Common distributions of data 
 
(5.1)  Normal or Gaussian distribution 
 
Continuous data can be grouped into categories and the frequency of observations 
within each category plotted in a histogram which provides a useful visual summary, 
particularly of a large amount of data (Figure 1).  

 

 

The two central areas represent the 
mean +/- 1 Standard Deviations (68% 

of the observations).  

The four central areas represent the 
mean +/- 2 Standard Deviations (about 

95% of the observations). 

The ‘tails’ represent the extremes 
beyond the mean +/- 2 Standard 

Deviations (2½% each side).  

 

Figure 1. Upper plot:  the height of 3,607 adult women recorded in the Scottish Health 
Survey, 1998 with the ‘Normal’ curve superimposed. 
Lower plot: the ‘Normal’ distribution and its properties 
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In Figure 1, the distribution is bell-shaped and is referred to as the Normal, or 
Gaussian distribution. The properties of the Normal distribution are: 

(1) Distribution is bell-shaped, 
(2) Distribution is symmetrical about the mean, 
(3) The mean = median = mode, 
(4) The distribution is characterised completely by two parameters (the mean and 

standard deviation): 
a. The mean +/- 1 standard deviations encompasses 68% of the observations, 
b. The mean +/- 2 standard deviations encompasses about 95% of the 

observations, 
c. 2½% of observations have a value = mean – 2 standard deviations, 
d. 2½% of observations have a value = mean + 2 standard deviations 

 
(5.2)  Binomial distribution 
 
The binomial distribution is a theoretical distribution relevant for a trial when the 
outcome can take only one of two values (e.g. heads or tail with a coin toss, or 
success or failure with a treatment). The properties of the binomial distribution are 
used when making inferences about proportions. Consider a study to determine the 
effect on female fertility following treatment with a new drug. Women either conceive 
(a success) or not (a failure). In a study where each woman has the same probability 
of success the Binomial random variable is the observed number of conceptions 
(successes). The two parameters that describe the distribution are the number of 
women in the study (n) and the true probability of success for each woman (p). Then 
the number of expected women with a successful conception is n x p (also called the 
mean) and the variance is [ n x p (1 – p) ]. These values are used to calculate the 
confidence intervals associated with the chance of a successful conception. The 
calculations can be complex when the number of participating women is small. 
However, the calculations are simpler when the Binomial distribution approximates 
the Normal distribution which is the case when n x p and n(1-p) are greater than 5.  
 

Example: Six women successfully conceived in a study of 30 women undergoing 
fertility treatment with a new drug. The proportion of successes was 6/30 = 0.2 and 
the 95% confidence interval (that is the range of proportions in which we are 95% 
confident that the true rate of success lies) is 0.05 to 0.34. For p=0.2 and n=30, n x p 
=6 and n(1-p)=24 so this is just within limits where it is safe to assume the Normal 
distribution applies. If either n x p or n(1-p) are less than 5 the calculations are much 
more complicated! In general, it is best practice to use a sample size large enough to 
assume the Normal distribution applies. This requires careful planning at the design 
stage by guessing what you think will be the likely proportion of successes achieved. 
For example, in this fertility study if you thought the likely success rate would be 0.1 
(10%) then for n x p and n(1-p) to equal 5 or more you would need to recruit at least 
50 women (50 x 0.1 = 5, and 50 x 0.9 = 45). In general, when planning such studies 
use of a small sample size will be associated with a very large confidence interval 
and you have to ask yourself whether the effort is worthwhile. 

 
(5.3)  Poisson distribution 
 
The Poisson distribution arises from a simple probability distribution, just like the 
Binomial distribution but relates to the number of counts, or events that occur 
randomly and independently in a time interval. Examples include the number of 
admissions to hospital in a day. Unlike the Normal and Binomial distributions, the 
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Poisson distribution is characterised by only one parameter, the average rate 
observed from which the number of events per unit time can be calculated (referred 
to as the mean). Each value of a mean relates to a separate distribution so the 
Poisson is a family of distributions. We can calculate the probability of a certain 
number of admissions on any particular day by applying the distribution relevant to 
that mean. The calculations are complex but, for practical purposes the distribution 
obtained fits more closely with the Normal distribution when the mean is greater than 
10. Assuming the Poisson distribution fits the Normal distribution simplifies the 
calculations when deriving the confidence intervals.  
 
The Poisson distribution is used, for example, in mortality studies in a population 
where deaths occur randomly and independently of one another over the course of a 
year. The distribution obtained is based on the number of deaths observed (the 
mean) and the Poisson distribution can be used to compare deaths between different 
subsets of the same population, or between different time periods. 
 

Example:   A study was undertaken of deaths from cirrhosis of the liver in male 
qualified medical practitioners in England and Wales. There were 14 deaths when 
only 4.49 would have been expected from the age-specific rates estimated from the 
general male population. The standardised mortality ratio (that is the number of 
deaths observed divided by the number expected multiplied by 100) is 311, so about 
3 times more deaths than expected. We can calculate the 95% confidence interval of 
this estimate by using the Poisson distribution and assuming the deaths occur 
randomly and are independent of one another. Because the number of deaths 
observed is 14 (i.e. greater than 10) we can assume the Poisson distribution 
associated with this number approximates the Normal distribution. The approximate 
95% confidence interval is then calculated using estimates from the Normal 
distribution which yields values for the standardised mortality ratio of 148 to 474. This 
interval does not include 100 (the expected value if the null hypothesis were true) so 
the difference is statistically significantly different from 100 at the 5% level. Hence, 
the high mortality amongst doctors cannot be ascribed to chance. If the number of 
observed deaths had been less than 10 the calculations would have been more 
complex and beyond the description here. 
Source: An Introduction to Medical Statistics. 2nd ed. Martin Bland, 1995, Oxford 

Medical Publications. 

 
(6)  Parametric and non-parametric distributions (interval data) 
 
Many interval measurements in medicine conform to a bell-shaped (Normal) 
distribution. Examples of variables which have a normal (or approximately normal) 
distribution are heights in adulthood (see Figure 1), blood pressure, haemoglobin 
concentration and lung capacity in healthy people. These are referred to as 
parametric distributions. However, some variables do not fit with a Normal 
distribution. These include length of stay (Figure 2) which is skewed to the right 
(positive skew) and gestational age at birth (Figure 3) which is skewed to the left 
(negative skew). These are referred to as non-parametric distributions. 
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Figure 2. Length of stay (days) in 4840 children admitted to hospitals in one Hospital 

Trust over 3 years. An example of a positively skewed distribution. 
 

 
Figure 3. Gestational age in 30,360 births in Fife, 2003 - 2012. An example of a 

negatively skewed distribution. 
 
The shape of the distribution (parametric or non-parametric) influences the choice of 
statistical test used for analysing interval data. The t-test (a parametric test) is 
commonly used to compare the means of two samples. The assumptions underlying 
the use of the t-test are:  

1) the data come from a Normal distribution 
2) the samples are not too small 
3) the samples do not contain outliers (particularly a problem for small samples) 
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4) For comparison of 2 samples: 
a) the samples are of equal or nearly equal size 
b) the variances are equal or approximately so (but not critical as the 

calculations can allow for any marked difference in the spread of data) 

If these conditions are not met you will need to either (i) transform the data so that it 
does conform to the Normal distribution or (ii) use non-parametric tests which make 
no assumptions about the distribution of the data.  

 
(6.1)  Transforming data 
 
To use a t-test on data that are not normally distributed (skewed either positively or 
negatively) you must transform the data by subjecting it to a mathematical function so 
that it does fit a Normal, or approximately Normal distribution. Data can be 
transformed by taking logs or calculating the reciprocal (1/x) for positively skewed, 
and square (x2) or cube (x3) functions for negatively skewed data (but watch out for 
zero and negative values where the transformation used can lead to errors in 
outcomes).  Using a t-test on data that are not normally distributed can lead to the 
wrong conclusions (see section 14, page 16). 
 
The decision whether to transform the data and use a parametric test depends on the 
question you are asking. For example, if you want to know by how much the means 
of two groups differ then you will need to transform the data and use a parametric 
test such as the t-test which allows you to calculate a confidence interval for the 
difference in means. However, if you merely want to know if the distribution of the 
data from the two groups differ significantly (yes or no) then you can use a non-
parametric test which makes no assumptions about the distribution of the data. It is 
possible to calculate a confidence interval but the calculations are very complex and 
not routinely made by statistical packages. The non-parametric equivalents to the t-
test are the Mann-Whitney U Test and the Wilcoxon rank sum test.  
 
An example of a transformation is the biceps skin fold data in which the data are log 
transformed (= Log to base 10 of the biceps skinfold) to change the shape of the 
distribution to fit more closely with that for a Normal distribution (Figure 4). 
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n  678 
Mean  5.6 
Median 5.2 
SD  2.3 
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Maximum 20.4 
Percentiles: 
  25% 4.1 
  50% 5.2 
  75% 6.8 
IQR  4.1 to 6.8  
 

 
Figure 4. An example of a skewed distribution: the biceps skin fold (mm) and its log 

transformation (lower plot) 
 
If you are unable to plot the data as a histogram a simple measure of skewness can 
be made from the summary data using the Pearson’s skewness coefficient. 

Pearson’s skewness coefficient = (mean – median) / standard deviation  …….(eqn 1) 

For a normal distribution the mean equals the median so a value of 0 indicates the 
variable is normally distributed. A coefficient greater than 0.2 or less than -0.2 
indicates the distribution is skewed. The coefficient calculated for the data in Figure 2 
is 0.24 and that for Figure 4 (untransformed data) is 0.17. The data in Figure 2 would 
have to be analysed using non-parametric tests as it is unlikely that a suitable 
transformation would convert it to a normal distribution. The untransformed data in 
Figure 4 could be analysed using parametric techniques but it would be best to 
transform it to ensure the data fully met the assumptions for using these techniques. 
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(7)  Assessing the difference between two independent groups 
 
The choice of test depends on the type of data and on its distribution, if interval 
(Table 1).  
 
Table 1. The choice of statistical test when comparing the difference between 

two groups 

Type of 
data 

Distribution 
Normal or 

approximately so 

Size of sample Statistical test 

Interval, 
continuous  

yes ≥ 30 each sample z-test (Normal distribution 
for means) or t-test 
(unmatched) * 

F test or Levene’s test for 
comparing variances ** 

 yes < 30 t-test (unmatched) * 

F test or Levene’s test for 
comparing variances 

 no any Mann-Whitney U test or 
Wilcoxon rank sum test 

Interval, 
discrete 

- any Kolmogorov-Smirnov 2-
sample test 

Ordinal  - any Mann-Whitney U test or 
Wilcoxon rank sum test 

Nominal - Large, all with 
expected 

frequencies >5 

Chi-square test, odds ratio 

  Small, at least one 
with an expected 
frequency of <5 

Chi-square test with Yates’ 
correction or Fischer’s Exact 
test 

* If other parametric assumptions met, otherwise use non-parametric equivalent. 
** Levene’s test is more robust than the F-test to departures of normality. 

 
(8)  Assessing the differences between more than two independent groups 
 
A one-way Analysis of Variance (ANOVA) is used for assessing differences between 
the means of three or more groups of continuous data that are normally distributed or 
approximately so (Table 2). The null hypothesis is that there is no difference in the 
means of the different groups. The analysis will identify if the means do differ but will 
not identify which group or groups are significantly different from the others. For this 
you need to run post-hoc tests such as Duncan’s Multiple Range tests. Further 
discussion on this application is beyond the remit of this simple guide. A one-way 
ANOVA applied to two groups is the equivalent of the unmatched (independent 
groups) t-test. 
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Table 2. The choice of statistical test when comparing the difference between 
more than two independent groups 

Type of data Distribution Normal or 
approximately so? 

Statistical test 

Interval, 
continuous  

yes ANOVA * 

F test or Levene’s test for 
comparing variances ** 

 no Kruskal-Wallis test 

Interval, discrete - Kruskal-Wallis test 

Ordinal  - Kruskal-Wallis test 

Nominal - Chi-square test, *** 

Chi-square test for trend 

*    If other parametric assumptions met, otherwise use non-parametric equivalent 
**   Levene’s test is more robust than the F-test to departures of normality. 
*** Valid if the sample size is large and >80% of cells have an expected frequency of >5. If the sample 
size is small and >20% of cells have an expected frequency of <5 then use the Chi-square test but 
reduce the number of categories by collapsing cells or excluding categories. 

 
(9)  Paired samples 
 
In some studies interval data are collected as pairs of observations, for example, a 
measurement of lung capacity before and after administration of an inhaled drug. In 
this case the null hypothesis states the mean difference in change in lung capacity is 
zero. The difference between the pre- and post-drug results is calculated for each 
participant and the mean change and its standard error compared with zero. When 
the differences are normally distributed we use the paired t-test and when they are 
not we use the equivalent non-parametric test, the Wilcoxon matched pairs signed 
rank test. For categorical data the appropriate non-parametric tests are the Sign test 
and McNemar’s test (Table 3). 

Table 3. The choice of statistical test for paired samples 

Type of 
data 

Distribution 
Normal or 

approximately 
so? 

Size of sample Statistical test 

Interval, 
continuous 

yes ≥ 30 paired 
observations 

z-test (Normal distribution 
for means) or t-test (paired)  

 yes < 30 t-test (paired)  

 no any Sign test or Wilcoxon 
matched pairs signed rank 
test 

Ordinal  - any Sign test 

Nominal - any McNemar’s test 
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(10)  Assessing the relationship between two variables 
 
The relationship between two variables can be described via a correlation analysis 
which will measure the strength of association (correlation) between the two 
variables and by regression analysis which is more informative in describing the 
actual relationship in numerical terms. The Pearson correlation coefficient describes 
linear relationships and is best used when both variables are normally distributed. 
The non-parametric equivalent of Pearson’s correlation is Spearman’s Rank 
correlation which is best used when both variables are not normally distributed, or at 
least one variable is measured on an ordinal scale, or the sample size is small. 
 
In a simple regression analysis one continuous variable (called the independent 
variable, the explanatory variable or a covariate) is used to predict another (called the 
dependent variable). Two or more independent variables (continuous, discrete, 
ordinal or nominal) can be used to predict the dependent variable when the process 
is known as multiple regression or analysis of covariance. 
 
When the dependent variable is a binary variable (takes one of two values, for 
example, dead or alive) the appropriate regression technique is logistic regression.  
 
(11)  Assessing the trend in a variable of interest. 
 
Trends over time can be assessed using, for example, survival analyses. Survival 
curves of patients diagnosed with a particular condition can be compared using the 
Kaplan-Meier curve. A formal comparison of survival curves from two or more groups 
can be made using the Log-rank test (Figure 5).   
 

 
Figure 5. Survival curves in 301 patients with lung cancer. 

BSC = Best Supportive Care 
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At diagnosis 192 patients had cancers that were treatable and 109 patients had 
advanced disease (untreatable) and were referred for ‘Best Supportive Care’ (BSC). 
Median survival in those with treatable cancers was 366 days (95%CI 274 – 458) and 
in those considered BSC was 61 days (95% CI 43 – 79). The Log-rank test was 
highly significant (P<0.00001). 
 
The Cox proportional hazards regression model should be used to adjust survival 
estimates for factors known, or suspected of influencing survival including prognostic 
factors such as age, disease stage, treatments etc. 
 
(12)  Assessing agreement  
 
The agreement between two instruments, or two observers measuring the same 
thing, or the repeatability of a single observer making duplicate measurements under 
identical conditions can be assessed using Cohen’s Kappa, if the data are 
categorical, or by the paired t-test, if the data are interval and the differences 
between repeated measures are normal distributed. If the differences are not 
normally distributed you should consider using the non-parametric equivalent of the 
paired t-test, namely the Sign test or the Wilcoxon matched pairs signed rank test.  
An additional procedure to compare the repeatability of interval data is to calculate 
the Intraclass Correlation Coefficient (ICC), which is similar to the Pearson correlation 
coefficient. However, you need to be cautious in interpreting a Pearson correlation 
coefficient obtained from repeated measures and a better approach is to plot the 
difference between repeated measures against the mean of the two measures 
(known as a ‘Bland-Altman plot’). A practical example showing the correct (and 
incorrect) method of assessing repeatability is given in the NHS Fife Study Guide 
‘How to make sense of numbers’. 
 
(13)  Summary of when to use the tests and their limitations 
 
General rules:  

 Use parametric techniques on interval data taken from a population in which it 
is known that the data are normally distributed.  

 Use non-parametric techniques on interval data when the distribution from 
which the data came is unknown or if there is reason to suspect that the data 
are not normally distributed. 

  Use non-parametric techniques when the data are nominal or ordinal. 

 

(13.1)  Parametric tests 
 
The z-test 
 
Use to compare the means of two groups when the data are interval, parametric 
assumptions are met and the samples are large in size (more than 30). 
 
The unmatched t-test (for unrelated or independent data) 
 
Use to compare the means of two independent groups when data are interval and 
parametric assumptions are met (see Section 6 above). In reality the t-test is robust 
to small departures from a normal distribution and to small differences in variance 
between the two samples. The variances can be compared with the F-test or 
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Levene’s test when the data are only approximately normally distributed. The F-test 
calculates the ratio of the largest to the smallest variance (F = Variance1 / Variance 
2, where variance 1 is greater than variance 2). When both variances are equal the 
ratio is 1 which indicates the spread (width) of the two distributions is equal. As the 
width of one distribution increases compared with the other the ratio of variances will 
increase. It is safe to use the t-test even when the ratio of variances is up to about 4. 
When the widths of the distributions do differ materially the t-test can still be used 
though special adjustments are made to the calculation of results. Statistical 
packages such as SPSS will report the F-test (or Levene’s test for comparing 
variances) and both results for the t-test, one assuming the variances do not differ 
significantly and the other assuming they do. 
 
The Paired t-test (for related data) 
 
Use to compare the mean difference in paired, continuous measurements when 
parametric assumptions are met. 
 
ANOVA for unrelated data (one-way) 
 
Use to compare the means of three or more groups when data are continuous and 
parametric assumptions are met (both that for normality of the distributions and 
equality of variance). 
 
Limitations: ANOVA is fairly robust to moderate departures from normality but less so 
to unequal variances. Levene’s test can be used to compare the variances of the 
different groups. The analysis will identify if the means do differ but will not identify 
which group or groups are significantly different from the others. 
 
Pearson correlation coefficient 
 
Use to determine the linear association between two continuous variables that are 
normally distributed (but not critical). 
 
Limitations: The Pearson correlation coefficient should not be used if the relationship 
is non-linear, in the presence of outliers, when the variables are measured over more 
than one distinct group, when one of the variables is fixed in advance and never for 
assessing agreement between observers (or techniques). 
 
(13.2)  Non-parametric tests 
 
The Chi-square test (χ2) 
 
Use to compare two or more proportions for nominal data using actual counts. 
 
Limitations: In a 2 x 2 table (comparing two groups) the expected frequencies in all 
four cells should be at least 5. Otherwise, use Fischer’s Exact test. When there are 
more than two categories for one or both groups being compared at least 80% of the 
expected frequencies should be at least 5. If the condition is not met some categories 
should be combined until the condition is met. No cell should be ‘empty’ (i.e. contain 
zero observations). 
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The Chi-square test (χ2) test for trend 
 
Use to analyse categorical data when one of the variables has multiple categories 
that are ordered (e.g. by age groups, or time periods). 
 
The Mann-Whitney U test 
 
Use to compare the distributions of two unmatched (independent) groups when data 
are interval and parametric assumptions are not met, or when data are ordinal (rank 
ordered). 
 
Limitations: the test assumes the distribution of one or both samples is skewed. The 
test should not be used to compare the median of a positively skewed distribution 
with that from a negatively skewed distribution. It may not always be possible to 
check this if the sample sizes are small but if it is known that the distributions of the 
variable in the two populations from which the samples are drawn are essentially 
different then the test should not be used. In these circumstances the data from one 
sample may be transformed and reshaped to ensure the two distributions do match, 
at least approximately so. 
 
The Wilcoxon rank sum test 
 
Use as for the Mann-Whitney U test which is an equivalent. 
 
The Wilcoxon matched pairs signed rank test 
 
Use to compare differences in the medians of paired, continuous measurements 
when parametric assumptions are not met, or to ordinal data. It is also called the 
Wilcoxon signed ranks test in some books. 
 
The Kruskal-Wallis test 
 
Use to compare the distributions of three or more independent groups when data are 
continuous and parametric assumptions are not met, or when data are ordinal (rank 
ordered). 
 
Limitations: if only three samples there must be at least 5 observations in each 
sample. The test will identify if the distributions differ significantly between the groups 
but will not identify which groups differ from each other. 
 
The Sign test 
 
Use to compare the median of paired observations (interval or ordinal). 
 
Limitations: the sign test is a simple test based only on the sign of differences 
between paired observations. A more powerful test is the Wilcoxon matched pairs 
signed rank test (also called the Wilcoxon signed ranks test) which takes into account 
not just the sign of the difference but also its rank.  
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McNemar’s test 
 
Use for nominal data when analysing pairs of observations that are dichotomous 
(present or absent).  
 
Limitations: the test is based on the number of discordant pairs of which there should 
be at least 10. If there are less than 10 the test statistic should be calculated using 
exact binomial probabilities taken from the binomial distribution. 
 
Spearman’s rank correlation coefficient (Spearman’s Rho) 
 
Use to determine the association between two continuous variables that are not 
normally distributed, or with ordinal data.  
 
Limitations: there should be at least 7 pairs of observations. 
 
The Kolmogorov-Smirnov 2-sample test 
 
Use to compare two frequency distributions of discrete data.  
 
(14)  An example of the consequences of using the wrong test 
 
Blood loss during surgery was compared using two different surgical procedures for 
the same operation. The researchers collected data on 319 operations. Initially they 
compared the mean blood loss using an independent samples unmatched t-test and 
concluded that blood loss was not significantly different between the two surgical 
techniques (P=0.108). However, the data did not conform to a normal (bell-shaped) 
distribution so the t-test (a parametric test which assumes the data are normally 
distributed) was inappropriate. A Mann-Whitney U test, a non-parametric test which 
makes no assumptions about the distribution of the data suggested that the 
distribution of blood loss was significantly different between the two techniques 
(P=0.002). Use of the wrong statistical test had resulted in an incorrect inference 
(interpretation). The summary statistics are shown in Table 4. 
 

Table 4 Blood loss during surgery comparing two surgical techniques 
 

Blood loss (ml) Technique 1 Technique 2 Statistical test 

n 274 45  
 

t-test  
 

P = 0.108 

 
 

Mann-
Whitney U 

 
P = 0.002 

Mean 640 789 
Median 500 700 

SD 589 444 
Minimum 100 250 
Maximum 7500 2500 

25th percentile 400 500 
75th percentile 750 1000 

 
In a normal distribution the mean and median are identical, or at least very similar. 
This was not the case from the summary statistics which suggested the distribution of 
blood loss was skewed. The mean was greater than the median so the distribution 
was likely to be positively skewed as in Figure 4 above. In addition, the standard 
deviation (SD) was large in relation to the mean. Another ‘rule’ is that for data that 
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can only take positive values (such as blood loss) the data are likely to be skewed 
when the mean minus 2 x SD is less than zero, which was the case in this example. 
In addition, the Pearson’s skewness coefficient (Page 9) was 0.24 for technique 1 
and 0.20 for technique 2. A histogram of the data confirmed the skewness of the 
distribution (Figure 6). 

 

 
Figure 6. The distribution of blood loss in two surgical techniques 
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(15)  Exercises  
 
When planning a study it is important to also plan the data analysis. The choice of a 
statistical test must be made based on the type of data (categorical (nominal, 
ordinal), continuous (discrete, interval)), the inferences you wish to make (that is the 
comparison of interest such as comparing groups, testing relationships) and, for 
continuous data its distribution (Normal or non-Normal). 
 
(15.1) A study was being planned to compare the prevalence of stress incontinence 

in 80 men and 80 women with chronic obstructive pulmonary disease. Which 
of the following statistical tests would be appropriate to test the null hypothesis 
that the prevalence was the same in both groups?                 
(a) The paired t-test? 
(b) The independent samples (unmatched) t-test? 
(c) The Mann-Whitney U test?  
(d) The Chi-square test? 
(e) Fisher’s exact test? 

 
(15.2) GP data are to be used to compare the age of onset of asthma between adult 

males and females. Which of the following statistical tests would be 
appropriate to test the null hypothesis that the age of onset was the same in 
both groups?                                                                         
(a) McNemar’s test? 
(b) The independent samples (unmatched) t-test? 
(c) The Mann-Whitney U test?  
(d) The Chi-square test? 
(e) The Wilcoxon rank sum test? 
(f) One-way analysis of variance? 

 
(15.3) A study is being planned to investigate the mean number of days lost from 

school in children with asthma over the course of a year. For each child with 
asthma the researchers will select an age- and gender-matched control child 
free of asthma. It is envisaged that the raw data on days lost will not fit a 
normal distribution. Which of the following tests would be appropriate to test 
the null hypothesis that the difference in mean days lost is zero?  
(a) The paired t-test? 
(b) The independent samples t-test? 
(c) The Mann-Whitney U test?  
(d) The Wilcoxon matched pairs signed rank test? 
(e) The sign test? 
(f) McNemar’s test? 

 
(15.4) In the planned study in 15.3 the researchers also wish to investigate if the 

children with asthma and their matched controls are exposed to secondary 
cigarette smoke in their homes. Which of the following tests would be 
appropriate to test the null hypothesis of no difference in exposure to second-
hand smoke between children with asthma and their matched controls? 
(a) The paired t-test? 
(b) The independent samples t-test? 
(c) The Mann-Whitney U test?  
(d) The Wilcoxon matched pairs signed rank test? 
(e) McNemar’s test? 
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(15.5) Researchers wish to investigate if there is an association between lung 

capacity and height in women. Lung capacity will be measured in a random 
sample of 1000 women aged between 20 and 70 years who are free of 
respiratory symptoms. Which is the appropriate approach to analysing these 
data and which statistical measure could be used to assess the level of 
association?  What additional factors may the researchers have to take into 
account? 
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Appendix 1: Answers to the exercises 
 
(15.1) The data are categorical (stress incontinence present or absent) and the 

analysis will involve a comparison of proportions in a large sample. Hence, the 
appropriate test is the chi-square test which would be a 2 x 2 contingency 
table (columns: Male / Female, rows: stress incontinence present / absent). 
Alternatively, the Fisher’s exact test could be used which is valid for any 2 x 2 
contingency table and would have been appropriate particularly if the sample 
size was going to be small.          
 See Table 1 

  
(15.2) Age of onset is a continuous variable and the analysis will involve a 

comparison of means (or medians if the data are not normally distributed) 
between two independent groups (adult males and females). The appropriate 
tests are the independent samples t-test (if the data are normally distributed or 
approximately so) and the Mann-Whitney U test or the Wilcoxon rank sum test 
if the data are not normally distributed.     See Table 1 

 
(15.3) Number of days lost from school is a continuous variable. The analysis 

involves a comparison of days lost in children with asthma compared with their 
matched control. Hence, this will involve a paired analysis. It is irrelevant if the 
raw data on days lost are not normally distributed as the hypothesis is 
comparing the mean of the differences between each child with asthma and 
their matched control. The paired t-test would be appropriate assuming the 
differences are normally distributed. However, if the distribution of the 
differences in days lost was skewed you could use a Wilcoxon matched pairs 
signed rank test or a sign test. Use of the paired t-test will allow you to 
calculate a 95% confidence interval on the difference in days lost whereas use 
of the Wilcoxon matched pairs signed rank test or sign test will not.  

See Table 2 
 
(15.4) Parental smoking habit is a categorical (nominal) variable to be analysed as a 

dichotomous measure (smoker or smokers in the household versus no 
smokers in the household). The analysis will involve a paired comparison 
between children with asthma and their matched control. The McNemar’s test 
is the appropriate statistical test as it will allow for the matched design.  

See Table 2 
 
(15.5) The researchers will need to plot the lung capacity (vertical axis) against 

height (horizontal axis) and calculate the correlation coefficient. If the data are 
normally distributed they could use Pearson’s correlation coefficient (which 
measures the strength of the linear relationship between the variables) but if 
one or both variables are skewed in distribution they should use the non-
parametric equivalent which is the Spearman’s rank correlation coefficient. 
The researchers may also need to consider the women’s smoking habits and 
their ethnicity as these are factors known to influence lung capacity. The 
relationship between lung capacity and height could be investigated further 
taking into account differences in smoking habits and ethnicity using multiple 
regression, also known as analysis of covariance.   See section 10, page 12 
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Appendix 2: Glossary    Sources: [adapted from A-Z of Medical Statistics (Pereira 
Maxwell F) and Medical Statistics at a Glance, 3rd ed. (Aviva Petrie & Caroline 
Sabin)] 
 

Analysis of 
covariance 

A special form of analysis of variance that compares values for a 
dependent variable between groups of individuals after adjusting 
for the effects of one or more explanatory variables. 

Analysis of 
variance 

An analysis comparing the means of two or more groups of 
observations by splitting the variance of a variable into its 
component parts, each attributed to a particular factor. 

Bar chart A chart illustrating the distribution of a categorical or discrete 
variable by showing a separate bar for each category where its 
length is proportional to the relative frequency in that category. 
Bar charts can be represented either horizontally or vertically.  

Binomial 
distribution 

A discrete probability distribution of a binary (dichotomous) 
variable used to draw inferences about proportions. 

Categorical data Data in which an individual value of a variable can be ascribed 
to one of a number of distinct categories.  

Chi-squared test A significance test for comparing two or more proportions from 
independent groups. The observed proportion in each group is 
compared with the expected proportion based on a null 
hypothesis.  

Cohen’s Kappa A measure of agreement for categorical data. 

Confidence 
interval, CI 

A range of values in which the true mean for a population is 
likely to lie. It usually has a proportion assigned to it (for example 
95%) to give it an element of precision. 

Continuous 
variable 

A numerical variable which can theoretically take any value 
within a given range (for example, height, weight, blood 
pressure).  

Correlation 
coefficient 

A measure of the linear association (a straight line in a scatter 
plot) between quantitative or ordinal variables.  

Covariate  see Independent variable 

Cox proportional 
hazards 
regression 

A regression method for modelling the risk (or hazard) of an 
event (usually death) occurring at a given time. The model can 
contain multiple characteristics, for example, age, gender, 
smoking habit, presence of coexisting diseases etc).  

Dependent 
variable  

A variable (usually denoted by y) the value of which is predicted 
in a regression equation. 

Dichotomous  Division into two classes or groups. 
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Discrete data A numerical variable that can only take integer values (whole 
numbers). 

Explanatory 
variable 

see Independent variable 

Frequency 
distribution 

A display of data values from the lowest to the highest, along 
with a count of the number of times each value occurred. 

Histogram A graphic display of data frequency using rectangular bars with 
heights equal to the frequency count. 

Hypothesis A statement of the relationship between 2 or more study 
variables. 

Independent 
variable 

A variable (usually denoted by x) used to predict the dependent 
variable in a regression equation. Also called the predictor 
variable, the explanatory variable or a covariate.  

Interval data See continuous variable 

Intraclass 
correlation 
coefficient, ICC 

A measure of reliability or agreement for interval data. Its 
calculation is similar to the Pearson’s correlation coefficient but 
the ICC is more appropriate for assessing agreement. 

Inter-quartile 
range, IQR 

A measure of the variability of a set of measurements. The 
difference between the 25th and 75th percentiles containing the 
middle 50% of observations from a distribution of a continuous 
variable. 

Kaplan-Meier plot A survival curve in which survival probabilities are plotted 
against time from baseline (see Log-rank test). 

Logistic regression A statistical procedure to derive an equation to model a binary 
categorical variable (two categories) from one or more other 
variables that can be interval or categorical in nature. It is used 
to predict a probability (from 0 to 1) of occurrence of an event 
from a set of conditions. 

Log-rank test A non-parametric statistical test to compare two survival curves 
(see Kaplan-Meier plot) 

Mean The average value or measure of central tendency. The mean is 
obtained by dividing the sum of values by the total number of 
values. 

Median Middle value when data are ordered.  The value that splits the 
sample in two equal sized parts. 

Mode The value that occurs most frequently. 

Multiple regression See Regression 
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Nominal data A categorical variable for which the categories have no natural 
order (e.g. gender, eye colour, religion) 

Non-parametric Refers to data and tests of significance which makes no 
assumptions about the distribution of the data.  Data that are 
skewed in distribution (to the right or left) are described as non-
parametric. 

Normal (Gaussian) 
distribution 

A continuous probability distribution that is bell-shaped and 
symmetrical; its parameters are the mean and variance. 

Ordinal data A categorical variable for which the categories are ordered (e.g. 
severity of pain scores) 

Outlier Values in a set of observations which are much higher, or lower, 
than the ‘average’.  

Parameter A measurable characteristic of a population (e.g. average and 
standard deviation of blood pressure for a group of individuals). 

Parametric Refers to data in which the distribution is bell-shaped (Normal or 
Gaussian). Statistical tests that rely on data being distributed 
this way are called parametric tests.   

Pie chart A circular diagram in which the separate categories of a variable 
are represented as a fraction of 360 degrees. Each section of 
the ‘pie’ is proportional to the frequency in that category. 

Poisson 
distribution 

A discrete probability distribution of a variable representing the 
number of events that occur randomly and independently at a 
fixed average rate. 

Predictor variable see Independent variable 

Qualitative data See categorical data 

Quantitative data Data that can take either discrete or continuous values. 

Regression A statistical procedure to derive an equation to predict an 
outcome, interval variable (also called the dependent variable) 
from one or more other variables (also called the independent 
variable, the explanatory variable, the predictor variable). The 
independent variable can be interval or categorical in nature. 
When there is only one independent variable the procedure is 
referred to as ’simple regression’.  When there is more than one 
independent variable the procedure is referred to as ‘multiple 
regression’.  
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Regression 
coefficient 

The slope of the line of best fit in a plot between two variables. It 
represents the increase in an outcome variable from a unit 
increase in the predictor variable. For example, in a plot of total 
lung capacity against height in women the regression coefficient 
is 6.60 litres/metre which means that for every increase in one 
metre in height the lung capacity increases by 6.60 litres. 

Significance level 
(P-Value) 

In the context of significance tests, the P-value represents the 
probability that a given difference (or a difference more extreme) 
is observed in a study sample (between means, proportions etc) 
when in reality such a difference does not exist in the population 
from which the sample was drawn. In effect it’s the probability of 
getting a wrong answer by deciding that two populations differ in 
some way when in fact they do not. In statistical parlance, it is 
the probability of rejecting a null hypothesis of no difference 
between two populations when in fact the null hypothesis is true. 

Simple regression See Regression 

Standard 
deviation, SD 

A measure of variability of data. The standard deviation is the 
average of the deviation of individual values from the mean 
measured in the same units as the mean. 

Standard error (of 
the mean), SE 

A measure of precision of the sample mean. Estimates of a 
population mean value will vary from sample to sample. The 
distribution of these values is called the sampling distribution. 
The SE is the ‘standard deviation’ of this distribution.  

Standard score 
(also, z-score) 

Refers to how many standard deviations away from the mean a 
particular score is located. 

T-test A statistical test used to determine if the means of 2 groups are 
significantly different. 

Variable Any quantity that varies (e.g. blood pressure). 

Variance A measure of variability of data equal to the square of the 
standard deviation. 

Z-score A standard score, expressed in terms of standard deviations 
from the mean. 

Z-test A significance test used for comparing a mean or a proportion 
between two groups. 

 


