CHAPTER 1: SPIROMETRY AND FLOW–VOLUME CURVES

SPIROMETRY AND FLOW–VOLUME CURVES

1.1.1 Subdivisions of lung volume

1.2 Vital capacity (VC)

1.2.1 Determinants of the VC in healthy people

1.2.2 What determines VC in respiratory disease?

1.2.3 Measurement of the VC

1.3 Dynamic spirometry (FEV$_1$, FVC, PEF)

1.3.1 Technique (FEV$_1$ and FVC)

1.3.2 Analysis of the expiratory spirogram

1.3.3 The maximum expiratory flow–volume (MEFV) curve

1.3.4 Peak expiratory flow (PEF)

1.3.5 Determinants of maximal expiratory flow (V_{max}[exp])

1.4 Extrathoracic airway obstruction

1.4.1 Analysis of MIFV and MEFV curves

1.4.2 Extrathoracic airway calibre during forced breathing

1.5 Flow volume curves during tidal breathing

1.6 Learning Points

Further Reading

1.1 Subdivisions of lung volume.

Figure 1.1 shows lung volumes and capacities; spirometry can measure the volumes which are shaded. Expiratory effort cannot squeeze all gas out of the lungs; the minimal volume, inaccessible to spirometry, is called residual volume (RV).

At rest, breathing takes place in the upper 50% of TLC, called the inspiratory capacity (IC), although only a fraction of this is used (15–30%) except for sighs and yawns, etc. On exercise, tidal volume (VT) increases (as well as frequency) and increasing amounts of the IRV and ERV (Figure 1.1) are recruited.
In summary:

- VC decreases with ageing (dependent zone airway collapse/closure)
- VC is reduced in obstructive as well as restrictive disease
- VC may be normal in pulmonary vascular disease, and in early emphysema (without bronchitis)

1.2 **Dynamic spirometry (FEV\textsubscript{1}, FVC, PEF)**

The forced expiratory volume in one second (FEV\textsubscript{1}) was introduced by Tiffeneau in 1947 (Yernault, 1993); it has remained a key test ever since. Subjects must inspire quickly to TLC and, *without pausing*, exhale as forcefully and as fast as possible; the “blow” must continue for as long as possible (> 6 s in patients with airflow obstruction), with encouragement from the operator, to obtain the FVC and, thus, the FEV\textsubscript{1}/FVC ratio. The mantra is **F–F–F**: *Full inspiration–Forceful expiration–Full expiration*. Maximum effort is associated with a significant fall in FEV\textsubscript{1} (up to 5%) in about 7% of subjects because of gas compression and a fall in thoracic gas volume caused by high alveolar and pleural pressures (see Figure 1.3 and 1.3.3, p.7-9); nevertheless, **dynamic spirometry should always have maximal effort for consistency**.

![Spirogram](image)

Figure 1.2 Forced expiratory volume versus time for a normal subject and patients with COPD (obstructive) and lung fibrosis (restrictive). FET is forced expired time. Note for COPD, expired volume continues to increase being 0.3 L greater at 10 s (FVC) versus 6 s (FEV\textsubscript{6}), with a correspondingly greater FEV\textsubscript{1}/FEV\textsubscript{6} (0.4) than FEV\textsubscript{1}/FVC (0.35) ratio.
CHAPTER 1: SPIROMETRY AND FLOW–VOLUME CURVES

Figure 1.3 Maximal expiratory flow plotted against forced expired volume. Curves in A show effect of ageing with a “knee” in young and curvilinearity or “scooping” (not as severe as in COPD) in older subjects. B shows effects of gas compression when volume axis alters from expired volume change to thoracic gas volume (TGV) change; a submaximal effort may go outside the expired volume envelope (see text). C shows typical MEFV curves for the restrictive and obstructive pathologies. D shows the progression of COPD from the early to late stages.

The MEFV curves in normal subjects may show marked individual differences (which are very repeatable) in the first 33% of expired volume (some individuals have a pronounced plateau or “knee” of flow [Figure 1.3A]), but there is generally a linear decrease of flow over the last 66% of the FVC with no concavity or “scooping” (elderly normals may show mild scooping, Figure 1.3.A). Airflow obstruction shows profound curvature (Figure 1.3.C and D). In cases where the FEV₁/VC ratio is borderline,
1.6 Learning Points:

- The vital capacity is reduced in restrictive and obstructive disease.
- In airflow obstruction the FVC underestimates the actual VC.
- The FEV₁/FVC ratio is a good estimate of airflow obstruction, but the ratio declines with age.
- The shape of maximum expiratory (MEFV) and inspiratory (MIFV) flow–volume curves is more informative than the calculation of flow–volume indices.
- Peak expiratory flow does not distinguish obstruction from restriction.
- Choke points in the central intrathoracic airways set maximal expiratory flow, based on their bronchial wall wave speed — a function of their compliance and area, and the gas density.
- Inspiratory flow is determined by the force and speed of muscular contraction; disease of the extrathoracic airway may limit maximum inspiratory flow.

Further Reading

General

Technical

Historical